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INTRODUCTION

In much of the western United States, and
particularly in the Southwest, small watershed
runoff is dominated by infrequent short-
duration, high intensity thunderstorm rain-
fall, Thunderstorm runoff is of interest to
hydrologists, engineers, and others involved in
water supply, design of culverts and bridges,
sediment transport and deposition, and flood-
plain management. Spatial and temporal rain-
fall variability, and variability in soils,
cover, topography, and land use, often make
runoff peak and volume estimates unreliable.

Many different models have been used to
estimate runoff peaks and volumes from small
watersheds, but few models are sensitive enough
to separate the influences of rainfall vari-
ability, watershed characteristics, and channel
routing in estimating runoff. In many cases,
particularly for very small watersheds (about
100 acres or 1less), such sensitivity is not
needed, and simple equations, such as the
Rational Method, may be satisfactory. However,
to delineate hydrologic response to changes in
an urbanizing watershed when the input is
thunderstorm rainfall, a more complex model is
required. Such a model must simulate thunder-
storm rainfall input, both in time and space,
as well as the important watershed parameters
such as infiltration, cover, slope and channel
parameters such as geometry and infiltration.
When a distributed model is used, an accurate
procedure for routing the flood peaks from
wvatershed elements to the outlet must be used.
The model also must simulate the abstracting

ephemeral stream channel «common to the
Southwest.
In this paper, a kinematic cascade

rainfall-runoff model is evaluated for possible
use in floodplain management of urbanizing
southwest rangeland watersheds. The model is

adapted for breakpoint rainfall input, and
infiltration parameters can be spatially
varied. Watershed geometry is modeled as a

series of rectangular planes and trapezoidal
channels. The kinematic approximation is used
for unsteady flow calculations on planes and
channels, and the Smith-Parlange model (Smith,
1981) is used for infiltration, The hydrologic
effects of anticipated changes in land use are
illustrated with simulations of four actual
rainfall-runoff events on a well-instrumented
2000-acre experimental rangeland watershed.
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RAINFALL-RUNOFF MODEL

The kinematic cascade model, KINEROS
(Kibler and Woolhiser, 1970; Rovey et al.,
1977; Lane and Woolhiser, 1977; Smith, 1981),
used in this study, is versatile and sensitive
to both rainfall and watershed characteristics

(Osborn, 1984). It is a well-tested nonlinear,
deterministic, distributed parameter model
(Rovey et al., 1977). Inputs are: (1) hyeto-

graphs of actual or simulated rainfell, (2)
watershed surface geometry and topography, (3)
surface roughness parameters, (4) infiltration
parameters, and (5) for the channels, hydraulic
roughness, cross-section area, slope and infil-
tration parameters. The model includes a
routine for channel abstraction. For a more
detailed description of the model, see Smith
(1981). The model is operational on a *Digital
Equip. Corp. VAX 750 minicomputer, and can be
adapted to any system with similar capacity.
In theory, there is no 1limit to the size or
complexity of a watershed to which KINEROS
could be applied, but a practicel upper limit
seems to be about 30 square miles

EXPERIMENTAL WATERSHED

Watershed 63011 (2000 acres) is located on
the upper end of the Walnut Gulch experimental
vatershed near Tombstone, Arizona (Fig. 1). It
has a combined grass and brush vegetation
cover, and has been grazed continuously for
about 100 years, Watershed 63011 is drained by
three principle sand-bottomed ephemeral stream
channels, referred to as the north, central,
and south branches,with runoff from the central
branch largely controlled by two stockponds
(Fig. 1). The north branch is characterized by
an incised sand-bottom channel extending to
within 1200 feet of the head of the drainage.
The south branch is doninated by an incised
channel in the lower half of the drainage. The
channels are normally dry; there is no base
flow. An active headcut is cutting into a
broad swale as it moves up the south branch.
There are no buildings or paved roads on 63011.

* Mention of a trade name in no way
constitutes endorsement of the product by the U.S.
Government.




There are 10 weighing-type recording rain-
gages on, or immediately adjacent to, the
2000-acre subwatershed (Fig. 1). Runoff from
the watershed was measured at a flume (Smith et
al., 1982) at the watershed exit, and 19 runoff
events were selected to validate the model.

MODEL VALIDATION AND CALIBRATION

For FKINERQOS, watershed 63011 was divided
into 28 planes and 11 channels (the plane and
channel numbers correspond to the order of
processing within the program - Fig. 2). A
representative plane is shown to indicate the
level of simplification required (Fig. 3).
Surface geometries were determined separately
for each plane and channel reach. There was no
significant overflow from the ponds on the cen-
tral branch for the events selected, so the
planes and channel reaches above the ponds were
not included in this analysis.

Parameters describing infiltration,surface
roughness, and channel losses were adjusted
based on hydrograph simulations and actual
runoff hydrographs. Because of the relative
homogeneity of watershed 63011, the same infil-
tration and roughness characteristics were used
for all planes, Different values can be used
for each plane but values cannot be varied
within a plane. The soil classification for
63011 fell between loamy sand and sandy loam,
with 407 rock content. Based on Rawls et al.
(1982), average saturated conducivities for
loamy sand and sandy loam (with 40% rock con-
tent) were 0.72 and 0,31 in/hr. The calibrated
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infiltration rate of 0.53 in/hr fell nicely
within this range. Also, a sorptivity parameter
value of 3.0 inches fell within the range of
2.4 to 4.3 inches for loanmy sand and sandy loam
suggested by Rawls et al. (1982). Once the
characteristic watershed parameters, including
channel infiltration, were determined, ante-
cedent soil moisture was varied for indivijual
events, to match actual and simulated peaks for
19 events (Table 1). The differences between
actuval and simulated volumes can be considered
as a measure of the accuracy of the model,

ANALYSIS

Four of the more recent runoff events on
63011, with reliable rainfall and runoff
records, were used to illustrate the use of
KINEROS for simulating peaks and volumes from
an urbanizing watershed (Fig. 4-7). We then
assumed that a changing land use (high density
residential development) had reduced the final
infiltration rate for the watershed (not in-
cluding the channels) to 0.10 in/hr, with all
other variables remaining unchanged.

With reduced infiltration, runoff peaks
were two to four times as great (Table 2). In
effect, the expected frequencies for storm
peaks were changed significently, which is
particularly important in floodplain manage-
ment. For example, the simulated peak of 874
cfs for the natural watershed, for 04 Aug 80,
has about & 5-yr recurrence interval for
63011. The simulated peak of 1733 cfs, based
on reduced infiltration and no channel losses,
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Figure 1. Walnut Gulch experimental watershed 63011.
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We also looked at the effect of lining the
channels while leaving the remainder of the
vatershed untouched. The resulting change was
less extreme than when we reduced watershed
infiltration, and 1in most situations, the
increased volume would not be significant.
However, if the floodplain manager is concerned
about potential groundwater recharge (as is the
case in cities such as Tucson, Arizona), then
changes in volume could be significant. Total
estimated channel abstractions from unlined
channels for the four events ranged from 7.4 to
23.3 ac-ft. Even though only a fraction of the
channel abstraction may reach the groundwater
table, such simulations would provide a guide
to potential losses in groundwater recharge
when channels are lined. .

Finally, when we simulated runoff peaks
and volumes assuming a final infiltration rate
of 0.10 in/hr, along with impervious channels
(Table 2), volumes were increased by about 50
to 100 percent.

-

Teole 1. Simulated pasks and volumes for celected svants on Malnut Gslch Matershed
63011
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DISCUSSION
With the rapid advances in computer

technology, more sophisticated mathematical
models are available for evaluating hydrologic
changes with changing 1land uses for southwest
rangelands. One such model, a kinematic
cascade model, KINEROS, appears to be particu-
larly well-suited for analyzing rangeland
watersheds undergoing change when flood peaks
or total hydrographs are needed. The model
works well for volume comparisons, but simpler
models are acceptable if only volume compari-
sons are needed.

In this analysis, we assumed two simple
situations of changing land use to illustrate
the potential value of a .kinematic cascade
rainfall-runoff model for floodplain manage-
ment.” However, the model is much more flexible
than this. One could look at the effect of
development on different parts of the water-
shed, including topographic changes such as
terracing. The number of possible configura-
tions and combinations of land use is limited
only by the size of the planes.

KINEROS includes several options which we

did not illustrate. For example, a subroutine

for sediment transport, which may be helpful in

deterzining potential sedimentation problems

_for retention reservoirs and of the potential
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for "clear water" scour below nonerodible areas
within a watershed, is inzluded. Also, reten-
tior and detention structures can be included
in the model.

SUMMARY

A kinematic cascade rainfall-runoff model
(KINEROS) has been adapted as a tool for
rangeland research in the Southwest. During
the period of adaptation (3 years), while the
model was being improved for research uses,
advances in computer technology have suggested
the potential for other practical uses, such as
floodplain management. The model can be used
to simulate hydrographs for real or design
storms, and the effects of changes on the
hydrology of the watershed can be estimated

through "before” and "after" hydrograph
simulations,
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