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Abstract: The paper describes a procedure for direct, optimal fitting of the
log-Boughton frequency distribution to either complete sets or subsets of an
nual flood data. The analytical basis and derivation of the procedure are given
Annual floods from 65 yr of record on the 5,755-km2 Santa Cruz River at Tuc
son, Arizona, are used to show the fitting of the distribution to a complete data
set, and annual floods from 24 yr of record on the 149-km2 Walnut Gulch wa
tershed, in southeastern Arizona, are used to show the fitting of the distri
bution to a subset of data. Substantial differences between the log-Boughton
and log-Pearson type 3 distributions occur in fitting to the Walnut Gulch data
due mainly to the large negative skew coefficient (-2.83) of this data set. The
computer program which fits the log-Boughton distribution plots the data points
on a probability paper which is automatically scaled to linearize the fitted
distribution.

Introduction

The original description of the log-Boughton distribution for frequency
analyses of annual floods (3) included trial-and-error procedures for fit
ting the distribution to a set of data. This paper describes a procedure
for direct fitting of the distribution to either complete sets or subsets of
data.

The original paper, mentioned previously, and an earlier report (2)
describe the distribution and its development. A brief description is re
peated here as a basis of explanation of the direct fitting procedure.
Using the notation of the Water Resources Council (5) guidelines, the

base 10 logarithm of the discharge, Q, at a selected recurrence interval,
T, is given by

log Q = X + KS (1)

in which X = the mean of the logarithms of the annual floods; S = the
standard deviation of the logarithms; and K = the frequency factor for
the selected recurrence interval, T years.

The distribution is based on a relationship between frequency factor
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K and the In In [T/(T - 1)] function of recurrence interval. For brevity
of writing, we use

(2)

The distribution is based on the relationship

(K-A)(G-A) = C (3)

in which A = a parameter of the distribution which determines its shape,

similar to the skew coefficient of the log-Pearson type 3 distribution. C
= a constant for a set of data.

When A and C are evaluated, the frequency factor corresponding to

a required recurrence interval is given by

The distribution is fitted to the data so as to minimize the sum of

squares of the errors of estimate, using a least squares linear regression.

A new mean X* and a new standard deviation S* are calculated to re

place the estimates of these parameters obtained from the data set.

Analytical Model for Fitting the Distribution

Given a data set of N annual floods, the logarithms of each flood value

can be normalized by subtracting the mean and dividing by the standard
deviation to give a set of actual frequency factors, K{:

K. = ^J^ (i-ltoN) (5)

For any given value of A, there will be N estimates of the constant C,
given by

(Ki - A)(G -A) = Q (i = 1 toN) (6)

The analytical model used to fix the shape of the distribution is to find
the value of A which minimizes the mean squared error of C. This model
also determines the value of C to be used in Eq. 4. The problem is to
find values of A and C which minimize the function

N

A)-Q]2 (7)
=i

Taking the partial derivative of Eq. 7 with respect to C, and setting
df/BC = 0, the optimum value of C is given by

C = KG- (TTG) A + A2 (8)

Substituting the value for C given in Eq. 8 back into Eq. 7, and then

taking the partial derivative of Eq. 7 with respect to A, df/dA = 0 gives

KG(K+~G)-
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cov (KG, K + G)

var[(K+G)] (9b)

of/heprivation of the equations are set out in Appendix I.
! a anAC haVe been evaluated as shown, a new mean X* and a

new standard deviation S* are determined so as to minimize the sum of
squares of the errors of estimating the logarithms of floods in the data

The fitting procedure is to calculate values of K* for each plotting po
sition, using the optimum values of A and C with Eq. 4. For each flood
in he data set there are paired values of frequency factor K* and base
10 logarithm of the flood X, i.e., there are N pairs of (K*,X) values. The
distribution is fitted as a least squares linear regression of X and K* The
slope of the regression line is the new standard deviation S*, and the
intercept of the regression line, i.e., when K* = 0, is the mean X*, which
minimizes the sum of squares of errors.

J^***1 fid
q rors.

cJ^w Is fitted t0 the data set "sing these values of X* and
S* with frequency factors obtained from Eq. 4.

Calculation Procedure for Complete Data Set

The most common application is to fit the distribution to a complete
data set, and this section describes the relevant procedure for this ap
plication. The following section deals with applications where some data
values cannot be used in fitting the distributions, e.g., in years of no
flow where the logarithms of zero cannot be evaluated.

For complete data sets, in which N is the number of data values:

1. Take the base 10 logarithm of each annual flood
2. Calculate the mean X and standard deviation S of the logarithms
3. Rank the logarithms in order of magnitude, the highest has rank

m = 1; the lowest has a rank m = N.

4. For each flood, calculate a plotting position, i.e., the probability
of exceeding P and recurrence interval T. The Cunnane plotting posi
tion (4) is used for all results shown later in this paper.

m - 0.4 1

~ N + 0 2'' in Which m = Rank Number' ar»d T = - (10)

5. For each flood, calculate

:/ = i to N)

6. For each flood calculate

logJC-X
*v ~i ," (i — 1 to AO nry\

S V1Z/

7. Calculate
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KG(K + G) - KG(K + G)

8' A " (K + G)* -

9. C = KG - (K + G) A + A2 (15)

10. For each plotting position, calculate

Kf=A+ -£—., (i = ltoN) (!6)
Gi ~ A

using G, from step 5, and A and C from steps 8 and 9.
11 Calculate the new standard deviation S* and new mean X* by fit

ting a linear regression as follows

S* = 2K?X' ffiK^ ; (I = ltoN) and ** = *-**S* (17)
( f) N

12. The distribution is then used to estimate the flood of recurrence

interval T by

log QT = X* + KTS* (18)

Calculation Procedures for Subsets of Data

There are many situations where it is impossible or undesirable to in
clude all data values in the fitting of the distribution. In and areas, years
of no flow can occur, and it is impossible to incorporate zero flows when
logarithms of the flow must be calculated. In other situations, it may be
desirable to ignore one or more very low flows, which can unduly in
fluence the lower value end of the distribution, in order to make the
distribution fit more closely to the higher flood values
In these cases, it is erroneous to ignore the unwanted data values and

to tieat the remaining values as a complete data set. The ^ of on y
nonzero values as a complete data set will give estimates of nonzero
Zds for all future years, which is erroneous if years of zero flows have
already been observed in the period of record.

Existing practices for coping with these situations include adding ar
bitrary amounts to all data values or separating zero and nonzero floods
into separate distributions. These arbitrary practices are not^necessary^

The solution given by Eqs. 8 and 9 is optimal for fitting the log-Boughton
distribution tfsubsets of data as well as to complete data sets. Let N -
total number of data values; d = number of data values to be omitted
from the fitting of the distribution; n = number of data values to be
included in the fitting of the distribution; thus, n - N - a.
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The calculation procedure for fitting the distribution to the subset of

n values is:

1. Rank the complete set of N values in order of magnitude; in the

highest rank m = 1.

2. For each flood in the complete set, calculate a plotting position

i.e., the probability of exceedence P and recurrence interval T. For in

stance, using the Cunnane plotting position formula

m- 0.4
P = (19)

N + 0.2 K }

The use of N, the total number of data values in the complete data set,

in calculating the probabilities of exceedence is emphasized to minimize

misunderstandings.

3. Discard the data values which are not to be used in fitting the

distribution, leaving the subset of n data values.

4. Take the base 10 logarithm of each of the n annual floods.

5. Calculate the mean X and standard deviation S of the logarithms

of the subset.

6. For each flood in the subset, calculate

G, = lnln(:p^j-j; (i = ltoN) (20)

7. For each flood in the subset, calculate

log X, - X
* = "S ' (i"=ltoN) (21)

2 K G
8. Calculate KG = —; (i = 1 to N);

n

n n

(i = ltoN); KG(K+G) = *KiGi(Ki + Gi); (i-ltoN) (22)
n

KG(K + G) - KG (KTG)

(K + G)2 - [(K~TG)f K }

10. C = KG- (TTZ) A + A2 (24)

11. Continue as in steps 10-12 for the complete data set.

Computer Program

The calculation procedures just described, together with a plotting

routine for automatically drawing the data points on probability paper,

have been programmed in FORTRAN on the PDP 11/34 computer at

the Southwest Rangeland Watershed Research Center in Tucson. The

computer is equipped with a Techtronix graphics terminal and hardcopy
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FIG. 1.—Santa Cruz River at Tucson, Arizona: Log-Boughton Distribution Fitted

to Complete Data Set (1915-79)

attachment. A copy of the program will be made available free on re

quest to the Director, Southwest Rangeland Watershed Research Center,

442 East Seventh Street, Tucson, Ariz. 85705. (Note: Mention of the

equipment by name is given for completeness of information and does

not imply endorsement by the U.S. Department of Agriculture.)

Examples of Fitting the Distribution

Fitting to a Complete Data Set.—The annual floods from 65 yr of rec
ord, 1915-1979, on the Santa Cruz River at Tucson in southern Arizona

(1), are used to illustrate the fitting of the distribution to a complete data
set. The basic data and calculated values of X*, S*, C, and A are shown

in Table 1.
Figure 1 shows the data points and the fitted distribution on a prob

ability paper which has been drawn to linearize the distribution for A
= 4.5. Because the distribution has more than two parameters, no single
probability paper will linearize the distribution for all values of A. How
ever, the computer program used at the Southwest Rangeland Wa
tershed Research Center to fit the distribution to a set of data includes

a plotting subroutine which automatically draws the probability paper

to suit the fitted value of A and plots the data points on this paper.
The fitted distribution was used to calculate flood magnitudes of 2,

10, and 100 yr recurrence intervals. The log-Pearson type 3 distribution

was also fitted to the data set (skew coefficient = -0.0889), and floods
of the same recurrence intervals were calculated using the distribution.

The results were very similar, as shown by the comparison in Table 2.
However, results from data sets which have much larger negative skew
coefficients can differ greatly, as shown later in this paper.
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TABLE 1.—Santa Cruz River at Tucson, Arizona Station No. 09482500

Annual peak

discharges,

in cubic feet

per second

(1)

191

192

193

194

195

196

197

Note: 1 cu

Drainage area

0

(2)

—

1,950

1,770

11,300

9,490

6,140

8,530

ft/sec =

= 2,222

1

(3)

—

4,000

9,200

2,490

5,020

16,600

8,000

2

(4)

—

2,000

4,200

1,670

3,820

4,980

3,470

0.028 m3/sec.

. sq mile (5,755

3

(5)

—

1,900

6,100

4,510

5,900

4,670

4,710

X* =

km2).

4

(6)

—

2,050

6,000

6,530

9,570

13,000

7,930

5

(7)

15,000

3,400

10,300

10,800

10,900

1,190

2,480

6

(8)

5,000

11,400

5,400

4,260

2,610

5,500

7,100

3.7203; S* = 0.2755; A =

7

(9)

7,500

1,950

3,280

2,960

3,050

5,860

2,660

8

(10)

4,900

1,600

9,000

3,860

6,350

16,100

23,700

= 4.4976; C =

9

(11)

4,700

10,400

8,000

3,800

4,420

8,710

13,500

21.5990.

Fitting to a Subset of Data.—The 57.66 sq mile Walnut Gulch wa
tershed, in southeastern Arizona, has been gaged by the U.S. Depart
ment of Agriculture-Agricultural Research Service (USDA-ARS) South
west Rangeland Watershed Research Center since 1957. The flow is
ephemeral, and transmission losses can reduce the runoff peak dis
charge as flow traverses the dry alluvial stream channel in moving through
the catchment to the gaging station (6). Smaller floods can be affected
by such losses to an extent that they become separated from the general
distribution of larger floods.

Annual floods from 24 yr of record, 1957-1980, on station 63.001, Flume
1 on the Walnut Gulch watershed, are shown in Table 3. In 1979, there
was very little runoff at the outlet of this watershed, resulting in a max
imum runoff rate of only 0.6 cu ft/sec (0.168 m3/s). Another low rate of
54 cu ft/sec (1.5 m3/s) in 1960 is notably lower than the other annual
floods in the data set. Table 4 shows the resulting of fitting the distri
bution to the complete data set, and then to several subsets, omitting
1, 2, 3, 4, and 5 lowest data values in turn.

When the distribution is fitted to the complete data set, the effect of
the two lowest annual floods is to give the data set a negative skew,
resulting in low values of A and C and unduly large estimates of the 2-
and 10-yr recurrence interval floods. As the lowest flood values are pro
gressively omitted from the fitting of the distribution, the mean X*, in
creases, and the standard deviation S* decreases, as is expected to occur.

TABLE 2.—Santa Cruz River—Comparison of Flood Estimates from Two Dis
tributions, in Cubic Feet per Second

Distribution

(1)

Log-Boughton

Log-Pearson type 3

Note: 1 cu ft/sec = 0.28 m3/s.

2

(2)

5,450

5,280

Recurrence Interval,

10

(3)

12,000

12,200

in Years

100

(4)

20,500

23,500
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TABLE 3.—Walnut Gulch Flume 1 Station No. 63.001

Annual peak

discharges,

in cubic feet

per second

(1)

195

196

197

198

0

(2)

54

710

360

1

(3)

3,928

3,615

2

(4)

851

6,057

3

(5)

2,709

2,978

4

(6)

4,288

639

5

(7)

841

2,071

6

(8)

1,574

1,365

7

(9)

11,253

4,680

2,850

8

(10)

3,388

808

1,229

9

(11)

2,767

1,679

0.6

Note: 1 cu ft/sec = 0.028 m3/s. Drainage area = 57.66 sq mile (149.3 km2).

The skewness of the data set reaches its most positive value when three

data values are omitted, and A and C reach their maximum values before

declining as further data are omitted.

The estimated floods of 2-, 10- and 100-yr recurrence intervals do not

vary much when the 2, 3, 4 or 5 lowest values are omitted in turn

from the fitting of the distribution. This suggests that only the two low

est values are outliers from the rest of the data set. The ability to fit the
distribution readily to several subsets of data is a valuable tool in check

ing the effects of outliers on the fit of the distribution.

TABLE 4.—Walnut Gulch

Data Set and to

ki. - - ■- - -

Number

of valuesV/l VulUww

omitted

(1)

None

(complete

data set)

Lowest 1

value

omitted

Lowest 2

values

omitted

Lowest 3

values

omitted

Lowest 4

values

omitted

Lowest 5

values

omitted

Flume 1—Results of Fitting the Distribution to

Several Subsets ol

X*

(2)

3.2259

3.2170

3.2877

3.3222

3.3455

3.3690

[Data

Parameter Values

S*

(3)

0.3057

0.5316

0.4182

0.3952

0.3972

0.3982

A

(4)

1.4597

2.3530

3.9648

4.3032

4.1317

3.9155

C

(5)

2.0885

6.0535

17.5031

20.8686

19.6064

17.9839

Calculated Flood,

Complete

in Cubic

Feet per Second

of Specified Recurrence

Interval, in Years

2

(6)

2,100

1,930

1,800

1,800

1,800

1,800

10

(7)

3,160

5,870

5,860

5,810

5,840

5,840

100

(8)

3,690

10400

12,300

12,500

12,400

12,200
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FIG. 2.—Flume 1 at Walnut Gulch, Tombstone, Arizona: Distribution Fitted to Sub

set of Data

Figure 2 shows the log-Boughton distribution fitted to the subset of

data with the two lowest values omitted. For comparison, the figure also
shows the log-Boughton and the log-Pearson type 3 distributions fitted

to the complete data set. The effect of the low flood values in distorting

the skew coefficient to a large negative value of -2.8367 is obvious when

the distributions are fitted to the complete data set.

Because of the simplicity of the procedure for fitting the log-Boughton

distribution to subsets of data, it is possible to examine quickly the re

sults from both subsets and complete sets. The quality of judgments
which are made by practicing professionals is dependent upon the qual
ity of information on which the judgments are based. The ease with
which the distribution can be fitted to subsets of data helps increase the
amount of information on which estimates of flood frequencies are made.

The other major benefit is that records with years of zero flow can be
fitted directly without making arbitrary adjustments, such as the adding

of a constant to all values.

Conclusions

The analysis of the log-Boughton distribution described in the paper

has produced an optimal solution for direct fitting of the distribution to

a set of data. This simplifies and improves on the trial-and-error fitting

procedures used before.
The fitting procedure can be used for subsets as well as complete sets

of data. Records containing years of zero flow cannot be included in any
fitting of a distribution to the logarithms of data. The method reported
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in the paper provides a means for optimal fitting of the distribution to

a subset of data as well as to complete sets.
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Appendix I.—Derivation of the Fitting Equations

Given (K - A)(G - A) = C [N(KfG) points] (25)

the chosen objective is to minimize the variance of C. This can be stated

as finding values of A and C which minimize the function

N

f(A,Q = 2 [(K, - A){G -A)- C,]2 = 2 [KG - (K + G) A + A2 - C]2. (26)

The minimum value of the function occurs when

df df

Taking the partial derivative of the function with respect to C

-^ = 2 2 [KG - (K + G) A + A2 - C][-l] = 0;
dC

2 (KG) - [2(K + G)] A + NA2 - NC = 0 (28)

Dividing by N KG - {K~+~G) A + A2 - C = 0;

C = KG- (kTG) A + A2 (29)

Taking the partial derivative of the function with respect to A

-^ = 2 2 [KG - (K + G) A + A2 - C][-(K + G) + 2A] = 0 (30)
dA

Expanding and dividing by 2N

-KG {K + G) + (K+ Gf A - (KTG) A2

+ (KTG) C + 2 {KG) A-2 (TTG) A2 + 2A3 - 1AC = 0 (31)

Substitution Eq. 29 for C gives

KG( K + Gj - KG (TTG) _ cov (KG, K + G)

~ (K + Gf - [(TTG)]2 ~ var (K + G)
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Appendix III.—Notation

The following symbols are used in this paper:

A = fitted parameter in LB distribution;

C = constant for a data set, used in fitting LB distribution;
G = In In T/(T - 1);

K = frequency factor derived from data;

K* = frequency factor calculated from LB distribution;

N = number of data in complete set;

P = plotting position (probability of exceedence);

Q = flood magnitude;

S = standard deviation of logarithms of flood magnitudes;

S* = slope of linear regression;

T = recurrence interval;

X = logarithm of flood magnitude;

X = mean of logarithms of flood magnitudes;

X* = intercept of linear regression;

d = number of data values omitted when fitting the distribution;

n = number of data values included when fitting the distribution;

and

m = rank number of flood.
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