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Stochastic Daily Precipitation Models

1. A Comparison of Occurrence Processes
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A first-order Markov chain and an alternating renewal process (ARP) with a truncated geometric

distribution of wet day intervals and a truncated negative binomial distribution of dry day intervals are

compared as models describing the occurrence of sequences of wet and dry days. Numerical

optimization techniques are used to obtain approximate maximum likelihood estimates of the Fourier

coefficients which describe the seasonal variation of the two Markov chain parameters and the three

parameters in the alternating renewal process. For the four U.S. stations studied, the Markov chain

model was superior to the ARP using the minimum Akaike information criterion.

Introduction

Most stochastic daily precipitation models are specified by

a discrete occurrence process describing the sequence of wet

and dry days, a continuous distribution function for the

amount of precipitation given that the day is wet, and the

required parameter set. Two methods have been used to

account for seasonal variation in the precipitation process.

In the first method, the parameters are assumed to be

constant for a period varying from a few weeks to a few

months. In the second method, finite Fourier series are used

to describe the seasonal variability. Woolhiser and Pegram

[1979] reviewed several models that used least squares

estimates of Fourier coefficients and pointed out that this

method has two major deficiencies: (I) the parameters

estimated for each period (which are then fitted by the

Fourier series) are statistics with differing sample variances,

yet each value is given the same weight and (2) there is no

sound statistical technique that can be used to decide if

added harmonics are significant.

As an alternative, Woolhiser and Pegram (1979] proposed

the use of direct numerical maximum likelihood estimates of

the Fourier coefficients and a likelihood ratio test to deter

mine the significance of added harmonics. They demonstrat

ed the technique using a first-order Markov chain as the

occurrence process for four U.S. rainfall stations and sug

gested that it may be possible to map the means, amplitudes,

and phase angles for significant harmonics to provide a

parsimonious regionalized model of the point precipitation

occurrence process.

Before any such mapping is attempted, however, alterna

tive occurrence processes should be compared to determine

if any one process is superior. The objective of this paper is

to provide such a comparison between the first-order Mar

kov chain and another alternating renewal process. A com

parison of distributions of precipitation amounts will be
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considered in a subsequent paper [Woolhiser and Roldan,

this issue].

Alternating Renewal Processes

Daily precipitation is described by the stochastic process

Z, = X, Y, t = 1, 2, • • •

where X, = I if the day is wet and X, = 0 if it is dry. Y,

represents the amount of precipitation and is described by

the distribution function F,(y) = P {Y, s y}. Therefore a

realization of the precipitation occurrence process X, is a

sequence of zeros and ones.

A dry day interval of length k is defined as the sequence of

k consecutive dry days bounded on each side by a wet day,

and a wet interval is defined analogously; thus the occur

rence process can also be considered as a sequence of

alternating wet and dry intervals. A dry interval of length k

beginning on the ith day is the event defined as follows:

{A",., = =0,

■ ■ ■ Xi+Ii., = 0, Xi+k = \] (1)

Given that a dry interval begins on the rth day, the

probability that the length Lo is equal to k is [Buishand, 1977,

p. 116]

P{Lo = k] = ,_, = 1, Xi = 0, X,+ , = 0,

= 0,Xi+t = 1|*,_, = l (2)

Assuming that the sequence {X,\ t = 0, 1 • • •} is the first-

order homogeneous Markov chain with the transition proba

bility

pu = P(X, = j\X,-t = i) ij = 0, I

The distribution of the length of dry intervals is

P{La = k} = poo*~'(l " Poo)

(3)

(4)

A = 1,2 0 < poo

where poo is the probability of a dry day following a dry day

and (I - poo) is the probability of a wet day following a dry
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day. The distribution of the length of wet intervals is

P[L, = *} = p,i*~'(l - Pu)

k= 1,2 • • • 0<pM :

log-likelihood function for the TGD:

(5) 365

\ogLGi= 2

The distributions (4) and (5) are known as truncated geomet

ric distributions or (TGD), with parameter dt = Py= \ - Pu,

i,j = 0, 1;/ ±j.

Buishand [1977, 1978] tested and recommended the use of

the truncated negative binomial distribution (TNBD) to

describe the distribution function for the length of wet and

dry intervals for the precipitation occurrence process. The

TNBD has the form [Sampford, 1965]

P{L, = *}
jk + n

\ k

- \\bn\-b?

i - bp
(6)

where / = 0, 1, it = 1,2 • ••, r,> -1 and 0 < b{,s I. If n = 0,

we obtain the logarithmic series distribution, and if r, = 1, we

obtain the truncated geometric distribution.

To allow the parameters in (3), (4), (5), and (6) to vary

daily in accordance with the method utilized by Woolhiser

and Pegram [1979], we substitute for each parameter aj the

indexed parameter a, (n), where n is the day of the year n =

(/ modulo 365) + 1. Each parameter is then expressed by the

polar form of a finite Fourier series:

o/n) = (7)

where./ = 1, 2, • • •, 6, n = 1, 2 •■ • 365, C/, and <$,, are the

amplitude and phase angle for the ith harmonic, m is the

maximum number of harmonics, and Aj is the mean.

The TGD for a wet or dry interval beginning on day n can

be written

P{L,{n) = k) = d,{n)U - </,<«)]*-'

k= 1,2- •

(8)

■, / = 0, 1

and the TNBD can be written as

(k + r,{n) - 1 n[l- b,(n)]k
b,WM ■)—rh^r (9)P{L,{n) = k) =

where * = 1,2,- ■ ■, i = 0,1, and d,{n), r,{n), and b,{n) are the

parameter values for day n. When the subscript i = 0, we

have the distribution of dry intervals and when / = 1, the

distribution of wet intervals.

The general form of both TGD and TNBD implies that the

parameters for a particular wet or dry interval are specified

for a particular day of that interval, only. We assumed that

the parameters are determined by the day on which the

interval begins.

Procedures for Estimating Parameters

by Maximum Likelihood

Suppose that for N years of record, A/,<«) wet or dry

intervals begin on day n, and for each interval length k there

are m,{k, n) intervals. The log-likelihood function for the

m,{k, n) intervals of length k for the TGD can be written as

m,{k, «){log d,{n) + (k - I) log [I - </,{'»)]} (10)

By summing this expression over the total number of

interval lengths, s and for 365 days in a year, we obtain the

d,(n) + log [1 - </,<«)]

2 (A- \)m,(k, n)\
*-i J

(II)

A similar technique can be used to obtain the log-likelihood

function for the TNBD:

365

M,{n)[r,{n) log *,<«) - log (1 - b,{n)rAn))\

n=l I

s

+ log [1 - b,{n)) 2 km/ik, n)

*=i

f* (r{ri)+j-
+ 2 m,{k, n) 2 'OB

*=i Ly-i \ * J '
(12)

where i = 0, 1, m, (A', n) is the total number of intervals of

length k beginning on day n, and M,(n) is the total number of

intervals (/ = 0, dry; / = I, wet) beginning on day n. Note

that

s

M,{n) = 2 "»■(*• «)
*=i

and 5 is the maximum interval length.

Let 0Gi be a vector whose elements are the coefficients of

the Fourier series describing </,</>) and 0Bi be a vector whose

elements are the Fourier coefficients describing r,</i), and

b,(n). We wish to find the estimates 0Ci and 0Bi, which

maximize LGi and LBi.

The Optimization Process

Because we wish to compare our results with those of

Woolhiser and Pegram [1979], similar methodology was

used. Precipitation records were first subdivided into 14-day

periods, with the first period beginning March 1. We as

sumed that an interval belongs to a particular period if it

begins on a day within that period. The extra day in a normal

year was included in period 26, and the extra day in a leap

year was neglected. The parameters d, for the TGD and n

and bj for the TNBD were estimated by maximum likelihood

methods using the Newton-Raphson iteration procedure for

the TNBD. Initial estimates for the iterative solution were

obtained by the method of moments [Brass, 1958]:

n,

b, Xj -

I -b,

(13)

(14)

where

X, mean length of wet or dry intervals;

variance of length of wet or dry intervals;

the number of sample dry or wet intervals of length

one;

total number of dry or wet intervals.
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TABLE I. Fourier Coefficients for Alternating Renewal Process

Station

Wichita,

Kansas

Kansas City,

Missouri

Tallahassee,

Florida

Sheridan,

Wyoming

Indianapolis,

Indiana

Pa

ram

eter

bo

ro

</.

bo

r0

d,

bo

r0

dx

bo

r0

d,

b0

r0

dx

Distri

bution

TNBD

TGD

TNBD

TGD

TNBD

TGD

TNBD

TGD

TNBD

TGD

Method

of Esti

mation*

LS

ML

AML

LS

ML

LS

ML

AML

LS

ML

LS

ML

AML

LS

ML

LS

ML

AML

LS

ML

LS

ML

AML

LS

ML

Mean

0.175

0.182

1.020

0.596

0.5%

0.222

0.226

1.070

0.588

0.586

0.310

0.318

1.534

0.538

0.536

0.231

0.249

1.198

0.549

0.544

0.289

0.295

1.169

0.547

0.543

c,

0.0644

0.0645

NS

NS

0.0830

0.0753

0.0482

0.0482

0.0369

0.0692

0.1134

0.1137

0.1111

0.0629

0.0717

0.0711

0.0857

0.0718

0.0583

0.0569

0.0490

-0.0648

NS

NS

0.419

0.253

2.844

3.072

0.520

-0.409

2.256

2.418

1.063

1.116

-2.277

-2.231

1.583

1.285

-1.757

-1.657

c:

NS§

NS

NS

NS

NS

NS

NS

NS

0.1121

0.1159

0.0692

0.0709

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

2.701

2.922

-0.553

-0.233

NS

NS

NS

NS

NS

NS

NS

NS

Cj

NS

NS

NS

NS

NS

NS

NS

NS

0.0793

0.0388

NS

NS

NS

NS

NS

NS

0.0452

0.0279

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0.0317

0.726

NS

NS

NS

NS

NS

NS

-0.0440

0.638

NS

NS

Num

ber of

Pa

ram

eters

4

1

4

3

8

5

4

3

6

3

log it

-2578.22

-1148.71

-3402.56

-1665.97

-3033.66

-1811.09

-2709.88

-1467.02

-2797.02

-1670.39

Total

Num

ber of

Pa

ram

eters

5

7

13

7

9

Total log

L

-3726.93

-5068.53

-4844.75

-4176.90

-4467.41

•LS means least squares, ML, maximum likelihood, and AML, approximate maximum likelihood.

tPhase angles are in radians.

tLog L is the numerical value of the log-likelihood function.

§NS means not significant at 0.01 level.

Brass pointed out that these initial estimates were not

unbiased. Therefore it is not unusual to obtain inadmissable

estimates (i.e., bt > 1 and r,- < -I). Maximum likelihood

estimates of TGD parameters, dh are the reciprocal of the

distribution means. After the parameter estimates were

obtained for each period, they were assumed to be correct

for the middle of the period, and least squares estimates of

the Fourier coefficients (equation (7)) were obtained as

starting values for the numerical optimization.

A multivariate, unconstrained optimization technique

from the IMS (International Mathematical and Statistical)

Library, called ZXMIN and based on a paper by Fletcher

[1972], was used. Because the parameters to be optimized

are bounded, a penalty function was added to the log

likelihood functions (II) and (12). This function caused a

large decrease in the likelihood whenever parameter values

took excursions outside the appropriate range. In all cases

studied, the maximum log likelihood occurred with parame

ter values well within the constraints. Parameters were

estimated to a minimum of three significant digits. With the

parameters estimated to this level of accuracy, the errors in

the likelihood functions were of the order of 10~5 or less,

according to the values of the gradient vector printed out by

ZXMIN.

The likelihood functions for the wet intervals and the dry

intervals were optimized independently using the following

procedure. First, each parameter was considered constant

throughout the year and equal to the mean maximum likeli

hood value calculated for the Fourier series. Then the first

harmonic was added, and a three-parameter (mean, ampli

tude, and phase angle) optimization was performed. If the

harmonic was significant, the second harmonic was added,

and the procedure was repeated with a five-parameter opti

mization; otherwise, the first harmonic was neglected, the

second was added, and a three-parameter optimization was

performed.

Additional harmonics for each parameter were accepted

or rejected by using the likelihood ratio test. In general, the

likelihood ratio (LR) test is based on the statistic (see, for

example, Hoel [1971] or Mielke and Johnson [1973])

X = - 2 log.
L(x, &)

(15)
L(x, 0)

Where L(x, ff) is the maximum likelihood function under

TABLE 2.

Station

Kansas City

Tallahassee

Sheridan

Indianapolis

Log-Likelihood Functions for Alternating

Process and Markov Chain Process

Alternating

logL

-5068.5

-4844.8

(-4856.6)*

-4176.9

-4467.4

(-4472.4)*

Renewal

Number

of

Param

eters

7

13

11

7

9

7

Renewal

Markov Chain

log/.

-5067.6

-4846.8

-4170.0

-4467.5

Number

of

Param

eters

6

10

6

8

'Likelihood attained for a maximum of two harmonics.



1
4
5
4

R
o
l
d
A
n
a
n
d

W
o
o
l
h
i
s
e
r
:

S
t
o
c
h
a
s
t
i
c

D
a
i
l
y

P
r
e
c
i
p
i
t
a
t
i
o
n
M
o
d
e
l

1

1.
0

W
I
C
H
I
T
A
,
K
S

T
N
B
O

O
f
i
Y

R
U
N
S

F
O
U
R
I
E
R

S
E
R
I
E
S
,
M
L

•
O
R
I
G
I
N
A
L

D
A
T
A

O
S
I
M
U
L
A
T
I
O
N

I

C
S
I
M
U
L
A
T
I
O
N

2

6
S

1
2

1
5

1
4
D
A
Y

P
E
R
I
O
D

Fi
g.

I
d

2
1

2
4

2
7

1
0

W
I
C
H
I
T
A
,

K
S

T
N
B
O

O
R
Y

R
U
N
S

M
L

E
S
T
I
M
A
T
E

•
O
R
I
G
I
N
A
L

O
A
T
A

O
S
I
M
U
L
A
T
I
O
N

I

6
S
I
M
U
L
A
T
I
O
N

2

o

©
®

A
O

.
;
.
•

6
1
2

1
5

1
4
D
A
Y

P
E
R
I
O
D

2
1

2
4

2
7

F
i
g
.

\
b

Fi
g.

1.
P
a
r
a
m
e
t
e
r
s
f
r
o
m

or
ig
in
al

a
n
d

s
i
m
u
l
a
t
e
d
p
r
e
c
i
p
i
t
a
t
i
o
n

se
ri
es
,
W
i
c
h
i
t
a
,
K
a
n
s
a
s
.



Roldan and Woolhiser: Stochastic Daily Precipitation Model 1 1455

1.0

.9

.8

.7

.6

•O .5-

WICHITA, KS

TGO WET RUNS

FOURIER SERIES, ML

ORIGINAL DATA

SIMULATION I

SIMULATION 2

O

& a o

© a
o

• s
o

• o

.2

12 15

14 DAY PERIOD

Fig. \c

ie 21 24 27

the Null hypothesis and L(x, 0) is the maximum likelihood

function under the alternative hypothesis. For example, to

test the significance of the first harmonic in the Fourier

series describing the parameter d,(n) in the TBD, we test the

Null parameter space (Null hypothesis) given by

Ho: 0Gi = (ZV, Cu = 0, 4>u = 0)

against the alternative parameter space,

//,: 0Gi = (A, Cu, <*>.,)

where D, is the annual mean value of d,{n).

Under certain regularity conditions, the statistic X has a

distribution that approaches the chi square distribution for

large sample size with degrees of freedom (df) equal to the

number of parameters determined by Ho (in this case, 2 df).

To be consistent with Woolhiser and Pegram [1979], we

rejected the Null hypothesis only if the probability of having

a more extreme test statistic was less than 0.01. Because our

procedures require repeated use of the likelihood ratio test

and the likelihood ratios are 'approximate' maxima, the

effective significance level is somewhat different. By using

this same procedure, Woolhiser and Pegram [1979] found

that the second harmonic was the highest significant har

monic for Markov chain parameters for the stations investi

gated here. Therefore we considered only the first four

harmonics for the ARP.

Results of Data Analysis

Five National Weather Service daily stations were ana

lyzed in this investigation: (I) Wichita, Kansas, with 20

years of record, (2) Kansas City, Missouri, with 25 years, (3)

Tallahassee, Florida, with 23 years, (4) Sheridan, Wyoming,

with 20 years, and (5) Indianapolis, Indiana, with 20 years.

These stations represent a range of climatic types from

middle-latitude steppe (Sheridan) to humid subtropical (Tal

lahassee). Because they are located near average climatic

boundaries, according to the Koppen system, the climatic

classification of Wichita, Kansas City, and Indianapolis,

may change from year to year [cf. Trewartha, 1954]. The last

four stations were also studied by Woolhiser and Pegram

[1979].

One of the fundamental assumptions of the ARP model is

that successive wet and dry intervals are independent. We

did not test the hypothesis that successive intervals are

independent for these stations. However, Buishand [1977]

and Cole and Sherriff [1972] concluded that they could not

reject the independence hypothesis based upon correlations

between the lengths of consecutive dry and wet spells for

several European stations.

Our preliminary attempts to fit the TNBD to the wet

intervals revealed some problems that had been previously

identified by Buishand [1977] but which are more serious in

this case because we have much smaller sample sizes

because of the shorter records and the use of 14-day rather

than monthly periods. First, we found that the likelihood

equations had no solution within the parameter space for

several periods (for example, this occurred for 10 periods for

the Kansas City record). Specifically, the method of mo

ments estimate given by (13) and (14) gave values of r, < -1

and bi > 1.0, so they could not be used as starting values.

Under these circumstances, when acceptable values of/■, and

bi were used as starting values, the iterative solution quickly

gave unacceptable values. Second, we found a very large

and apparently random variability for the acceptable values

of the parameter rt (for example, rt varied from 0.49 to 107

for the Indianapolis record). Part of this excessive variability
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Fig. 2. Parameters from original and simulated precipitation series, Tallahassee, Florida.
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is due to the small sample size and part is due to the strong

interaction between the parameters />,- and rt. Buishand

[1977] found that the simple correlation between b, and r-,

was greater than 0.9 from long (> 65 year) records in the

Netherlands. Therefore the range of bt and r, values within

the 95% confidence region can be quite large for a given

period.

At this stage of the investigation, we had two options: (I)

assume that r, was constant throughout the year and deter

mine the value of r, and the 26 values of b, that maximized

the sum of the 26 log-likelihood functions for each period, or

(2) abandon the TNBD for the wet intervals and use the TGD

(i.e., assume rx = 1). Because rt = I was almost invariably

included in the 95% confidence region for the periods for

which we could obtain maximum likelihood estimates of b,

and ri and a choice of r, = 1 reduced the number of

parameters, we chose to adopt the TGD for wet intervals.

For dry intervals, we followed Buishand's [1977] proce

dure and assumed that r0 was a constant throughout the year

and equal to the average of the maximum likelihood esti

mates for each 14-day period. These estimates will be

denoted as approximate maximum likelihood (AML) esti

mates because the likelihood is not fully maximized over the

parameter space. Buishand found that the AML estimates of

r0 were always within the 95% confidence region of the ML

estimate of ru.

The parameters obtained by the optimization procedure

for the TNBD and TGD are shown in Table I. The row in

Table 1 labeled LS denotes the Fourier coefficients obtained

by least squares fitting to parameter values estimated for 14-

day periods. The row labeled ML denotes the coefficients

obtained using a numerical technique (ZXMIN) to maximize

the log-likelihood functions. Only significant harmonics are

shown. The climatic complexity of a station is revealed by

the number of harmonics required for each parameter;

Wichita, for example, requires only five parameters, while

Tallahassee requires 13. A comparison of the ML and LS

estimates of Fourier coefficients shows that there can be

substantial differences. Therefore LS estimates may be far

from optimal in the likelihood sense.

The optimized coefficients were utilized in a simulation

model to generate two additional series equal to the length of

record at each station. The simulated records were then used

to estimate the parameters b0 and r0 for each 14-day period

for the TNBD and the parameter d, for the TGD. The sample

parameter values obtained from the original records and

from two simulated records, along with the maximum likeli

hood Fourier representation of the parameters, are shown

for Wichita and Tallahassee in Figures I and 2. The scatter

about the Fourier series curve is quite similar for the original

data and the simulated records, suggesting a satisfactory

identification of the parameters of the alternating renewal

process.

Comparison With Markov Chain

The distribution of wet intervals for the alternating renew

al process described by the TGD is very similar to that for

the two-state, first-order Markov chain. The only difference

is that the parameter for the TGD is specified by the first day

of the interval, while for the first-order Markov chain the

parameter may change each day during the interval. For

example, for a k-day sequence of wet days beginning on day

n, we have for the TGD,

P{LM) = k] = - </,(«)]*-' (16)
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TABLE 3. AIC for Alternating Renewal and Markov Chain on AIC [Akaike, 1974] where

Station

Alternating

Renewal

Markov

Chain

Kansas City

Tallahassee

Sheridan

Indianapolis

10151.0

9715.6

(9735.2)t

8367.8

8952.8

(8958.8)t

10147.2

9713.6

8352.0

8951.0

'Minimum AIC.

tMaximum of two harmonics.

and for the Markov chain,

/>[£,(«) = k] = [1 - p,,(«i + *)] f] pu(n + J) (17)

As a practical matter, the difference in the probabilities is

very small. For instance, using data from Kansas City for n

= 130 and k = 3, we obtain

TGD:

Markov chain:

P[L,(\30) = 3) = 0.099056

/»[L,(130) = 3] = 0.099058

If the parameter r0 approaches one, the parameter b0 in the

TNBD is analogous to d0 in the TGD. Therefore the TNBD

approaches the TGD, and a comparison of the fit of the

alternating renewal process with the Markov chain would

only test the sensitivity of the likelihood function to the daily

parameter variation within a run implicit in the Markov chain

formulation. Otherwise, b0 ^ d0 = 1 - Poo. and differences

between both likelihood functions are due to other factors,

as well as to the daily parameter variation. For example, for

Kansas City, when n = 130, * = 3, and r0 = 1.07 (See Table

1), we obtain for the TNBD,

/>[L0(130) = 3] = 0.13528

by using (9) with i = 0, and for the Markov chain,

/>[Lo(13O) = 3] = 0.13327

by using (17) with / = 0. The difference between these

probabilities is larger than those for the wet runs, although r0

is very near to 1 and can lead to significant differences in the

likelihood function.

Likelihood functions for the Markov chain (MC) process,

obtained by Woolhiser and Pegram [1979] and the alternat

ing renewal process (AR) for four stations, are shown in

Table 2. For the Markov chain, no harmonics higher than the

second were significant, while the third harmonic was signif

icant for b0 for both Indianapolis and Tallahassee. In Table

2, log-likelihood functions are shown in parentheses for both

stations for a maximum of two harmonics. A comparison of

the likelihood functions shows that the alternating renewal

process does not significantly improve the likelihood func

tion (For Sheridan and Kansas City, the AR process has a

lower log-likelihood function with one more parameter,

although this may be due to the fact that r0 is not fully

optimized over the parameter space.). A choice can be made

between the two competing models by selecting the model

which provides the minimum information theoretical criteri-

AIC = (-2) log (maximum likelihood) + 2k (18)

where k is the number of independently adjusted parameters.

As shown in Table 3, the Markov chain model results in the

minimum AIC for each station. Because the maximum

likelihood expressions for the alternating renewal process

with the TNBD are much more complicated, the estimation

of parameters takes considerably more computer time than

for the Markov chain. Therefore economic as well as statisti

cal considerations suggest that the Markov chain process is

superior to the alternating renewal process with the TNBD

for dry periods and the TGD for wet periods for the stations

and for the record lengths investigated in this study.

Considering that a first-order Markov Chain results in

intervals distributed as a TGD, this finding appears to

conflict with the results of Buishand [1977, 1978], who found

that the TNBD was superior to the TGD on the basis of chi

square tests for monthly periods for rainfall records from the

Netherlands, Germany, Belgium, India, Indonesia, Surinam,

and Egypt. Possible reasons for the different conclusions

include the following.

1. The U.S. stations may have precipitation occurrence

characteristics different from those of the stations studied by

Buishand, and tests identical to those he used could lead to

the conclusion that the TGD is superior to the TNBD.

2. The flexibility introduced by allowing the Markov

chain parameters to vary daily within a wet or dry run, as

contrasted to the TNBD, where the parameters are associat

ed with the first day of a run, may provide a superior fit.

3. The use of the likelihood statistic, rather than the chi

square test, may lead to different conclusions.

4. The much shorter record length used in this study (20-

25 years, as compared to 31-104-year records used by

Buishand [1977]) and the shorter periods (14 days versus

months) did not provide AML estimates of r0 that are close

to the ML estimates.

The first possibility seems unlikely, considering the wide

range of climatic characteristics of the U.S. stations. The

difference is probably due to a combination of factors 2, 3,

and 4. Additional analyses would be required to test this

hypothesis.

Factor 4, length of record, has been shown to be a

significant factor in model selection by Chin [1977] and

Eidsvik [1980]. Both investigators used the Akaike model

identification procedure and found that higher order Markov

chains were selected as the length of record increased.

Eidsvik also found that the estimated order of the Markov

chain increased with the length of the interval defining the

season. He attributed this result to either low frequency

variations and/or a methodological tendency to underesti

mate the order when the sample size is small. From these

results it appears plausible that the more complicated ARP

would have been selected had we used longer records.

On the other hand, Buishand did find that, for many

periods, the likelihood equations for the TNBD had no

solution within the parameter space for wet periods. We also

found this to be true for the U.S. stations investigated.

Although this problem can be overcome by assuming that

the parameter rt is constant throughout the year, it does

require different procedures than those used for dry intervals

and makes the computer programing more difficult. The use

of Fourier series to allow the parameters to vary daily, as
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well as parsimony with respect to the number of parameters,

make it advantageous to choose one distribution only for all

dry or wet periods.

Summary and Conclusions

A first-order Markov chain and an alternating renewal

process with truncated geometric distribution of wet day

intervals and a truncated negative binomial distribution of

dry intervals were compared as models describing the occur

rence of sequences of wet and dry days for five U.S. rainfall

stations. The two Markov chain parameters and two of the

three parameters of the alternating renewal process were

allowed to vary daily, as described by a Fourier series. The

third parameter in the alternating renewal process, r0, was

estimated by approximate maximum likelihood techniques,

as were the Fourier coefficients. The likelihood functions for

the alternating renewal process were not significantly greater

than those for the Markov chain, and the Markov chain

resulted in the minimum Akaike [1974] information criteria

for the four stations that were compared. Because the

numerical optimization technique to estimate Fourier coeffi

cients by the method of maximum likelihood required con

siderably more computer time for the alternating renewal

process than for the Markov chain, economic as well as

statistical considerations suggest that the Markov chain

model is superior for the stations considered for record

lengths of 20 to 25 years. The likelihood ratio test at the 0.01

level and the Akaike information criterion gave similar

results when used to determine the number of significant

harmonics.
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