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SIMPLE TIME-PONER FUNCTIONS FOR RAINWATER INFILTRATION AND RUNOFF
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R. M. Dixon, J. R. Simanton, and L. J. Lane

ABSTRACT

The equations of Darcy, Kostiakov, Ostashev, Philip, and four modified Philip equations were evalu-
ated for use in predicting and controlling rainwater infiltration and rainfall excess in crop and range-
lands. These eight equations were least-square fitted to data frem ring, border-irrigation, closed-top,
and sprinkling infiltrometers. FKostiakov's equation satisfied the evaluation criteria better than the
other seven equations. The parameters of Kostiakov's equation were physically interpreted by relating
their magnitudes to some physical, biological, and hydraulic characteristics of the infiltration system.
These characteristics included several infiltration abatement and augmentation processes and factors that
are controlled at the soll surface by land management practices. The eight equations were also fitted to
rainfall data to permit calculating runoff from small surface areas about the size of a typical crop
plant. Comparison of the regression curves for infiltration and rainfall suggested that land management
practices that appropriately alter the sofl surface will permit wide-range control of infiltration, run-
off, and erosion; and thereby achieve conservation and more efficient use of sofl and water resources for
crop production. The most important soil surface conditions affecting infiltration were nicroroughness,
macroporosity, plant litter, and effective surface head.

INTRODUCTION

Rainwater infiltration and runoff are hydrologic processes of vital importance to plants and people,
and thus deserve considerable modeling effort. Models which are simple, yet physically sound, are needed
by land managers to implement better use and protection of 1and resources. Such models can advance the
understanding of basic hydrologic processes; and this understanding, in turn, can lead to the prediction
and control of such processes. Control of rainwater infiltration and runoff can help alleviate land man-
agement problems such as excessive runoff and erosion; flash flcoding of upland watersheds; sedimentation
of waterways and reservofrs; non-point source pollution of surface waters; inadequate soi] water for seed
germination, seedling establishment, and optimal plant growth; excessive leaching of soluble salts and
plant nutrients; pollution of ground waters; slow aquifer recharge and declining water tables; excessive
loss of water by surface evaporation; and accelerated land deterioration and desertification.

The cost of such land management problems to society is of gigantic magnitude. Worldwide desertifi-
cation alone is estimated (Dregne, 1978) to be costing 15.6 billion dollars a year in lost agricultural
preduction, 3.2 billion due to waterlogging and salinization, 6.8 billfon to rangeland deterioration, and
5.6 billion to deterioration of rain-fed cropland. Such land deterioration is usually only partially
reversible by even the best land management practices.

Much effort has already been expended on the development of point or small area infiltration models
(Parr and Bertrand, 1960). In a series of papers, Dixon and coworkers (Dixon, 1977) have evolved a de-
scriptive concept for controlling rainwater infiltration, referred to as the afr-earth interface (A£I)
concept. The majn purpose of the study reported herein was to evaluate several simple inf{ltration equa-
tions for use in quantifying the AEI concept. This concept indicates that surface microroughness and
macroporosity (or their hydraulic counterpart - - effective surface head) control rainwater inftltratfon.
Quantification involved the selection of a simple infiltration equation having parameters sensitive to
these ArT conditions, Such an infiltration equation will be useful in predicting maximum cumulative in-
filtration for a given land management practice. However, prediction of excess rainfall, surface runoff,
and non-point source pollution requires use of a reference rainstorm. Dixon (1966) showed that a maxi-
mym-intensity storm could be generated for reference purposes by plotting maximum rainfall depths (50-
year frequency) against their duration times. This yields a cumulative rainwater curve similar in shape
to that for cumulative infiltratfon. This paper investigates the possibility that infiltration equations
can also be fit to the maximum-depth rainfall data that are available (Hershfield, 1961) for numerous lo-
catfons throughout the United States. The area between corresponding infiltration and rainfall curves
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would then provide a quantitative indication of either the rainwater or fnfiltraticn capacity excess.

THEQRETICAL CONSIDERATIONS

A1) infiltration equations can be interpreted in terms of the general transport law:

FLUX _ TRAWSMISSIon _ DRIVING . ELAPSED

- x  FORCE
YOLUME ~ COEFFICIENT GRADIENT TINE

The flux volume is conveniently expressed as unit depth of surface water infiltrating Ij,; the driving
force gradient, as a drop in hydraulic head # per unit soil depth L or as a dimensionless hydraulic gra-
dient (i = li/L); and the transmission ccefficient as a proportionality (permeability) constant or hydrau-
lic conductivity X given numerically by the flux volume when both the gradient and time are unity. Thus,
for infiltration volume in centimeters (o) and time in hours (krJ, the general transport equation be-
comes :

I“ (c1) = X (ery/hr) X £ (e/om) X T (he)

The equatiens of Kostiakov (1932), Philip (1957), Ostashev (1936), and Darcy {1856) were considered
for study because they all (1) express infiltration volume I, (or depth of surface water) as an explicit
function of time; (2) contain two parameters (4 & B} after a'tiding constant terms to Ostashev's and
Darcy's equations; (3) transform easily to linear forms for least-square regression analyses; and (4)
differentiate readily to infiltration rate Ip and infiltration deceleration Ip forms (Table 1).

Table 1. Four Historic Infiltration Equations, Their Linear Transforms, and Their First
and Second Derivatives.

INFILTRATION LINEAR 1ST DERIVATIVE (~)2ND DERIVATIVE
EQUATIOR TRANSFORM (RATE) (DECELERATION)*
(1)} Kostiakov Inl etna+Bing asr?-1 AB(1.8)7°~2
I, e A8
- -3/2
{2) enirip 1/m% e 4 B V24T 4 B 1/4 4T
I, =4t s 87
(3) Ostashev I =4+ 8 12 AT % 14 a2
I =4
v
{4) Darcy I,=AT+8 A 0
I, =ar

*Deceleration is the negative of the 2nd derfvative.

Darcy's equation was derived empirically to describe the volume of water absorbed by a saturated
stable sand bed having water ponded at the top and free drainage at the bottom. for viscous flow in a
stable saturated porous media, the absorption coefficient 4 {s given by the product of the hydraulic con-
ductivity K and the hydraulic gradient ¢ or 4 = ki, For the simple {nf{ltration system that Darcy used,
both K and ¢ could be maintained time invariant. Even in wet {nfiltrating sofls, neither X nor ¢ are
constant because of incomplete water saturation, soil instabilities (particularly near the surface), and
changing water potentials at irregular upper and lower sofl boundaries. HNatural sof) infiltration sys-
tems are never open to atmospheric pressure along thefr lower boundaries. Instead, they range from par-
tially open to completely closed. Darcy's equation applies best to infiltration in wet stable soils,
wherein ¢ is approximately unity and infiltration is driven almost entirely by the gravitational force,
In a dry-soil infiltration system, ¢ and X are interrelated variables, both of which are functions of the
soil water content with x increasing and ¢ decreasing with increasing water content. Since 1 usually
decreases more rapidly than X increases, the rate of infiltration tends to decrcase with time,

Ostashev's equation was derived to describe the volume of water absorbed horizontally (gravitational
gradient = 0) by a dry stable homogenecus porous media. The inffltrated volume decreases with s owing
to the abatement {n capillary pressure gradient as the wetting front advances. Similar to Darcy's equa-
tion, the absorption coefficient 4 may be interpreted as a product of mean time-weighted ¥ and ¢ during
the first time unit. HMowever, in this case ¥ is the unsaturated hydraulic conductivity which is several
orders of magnitude less than the saturated hydraulfc conductivity and ¢ {s the hydraulic gradient pro-
duced by capillarity, Vertica) infiltration into a dry stable system, where gravity as well as capillar-
ity is driving the process, will abate more slowly than permitted by 7%, 7he time exponent would thus be
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somewhat greater than 1/2. The wetter the soil initially, the greater would be the relative gravitation-
al contribution, and the greater would be the exponent. Thus, in Darcy's equation where absorption 1is
driven only by the force of gravity, infiltration is proportional to 7 whereas, in Ostashev's equation
where capillarity is the sole driving force, infiltratfon is proportional to 7%,

Philip‘s equation was derived analytically for the downward absorption of water into an initially
dry stable porous medfum. The first and second terms give the infiltraticn contributions of the capiie
lary and gravitational driving forces, respectively. Thus, Philip's equation accounts for the fnfiltra-
tion effects of both forces, essentially by combining (adding) Ostashev's and Darcy's equations, Para-
meters 4 and B may be regarded as capillary and gravitational absorption coefficients, respectively.

Kostiakov's equation was empirically derived to describe the time-course of infiltration as an inf-
tially dry soil absorbs irrigation water - - ysually at a decreasing rate until soil saturation is close-
ly approached, The absorption coefficient 4 may be interpreted in much the same way as the corresponding
coefficients in Darcy's and Ostashev's equatfons; i.e., as the product of the mean X and ¢ for the first
unit of time, Large 4 values are assoclated with soil surfaces that are microrough and macroporous or
with conditions favoring a relatively large contribution of the gravitational force to infiltration
{Dixon, 1977 and Dixon and Simanton, 197;3. In contrast, small 4 values are associated with a smooth
microporous surface where capillarity is the major force driving infiltration, Parameter A gives the I,-
time curve its magnitude, whereas rarameuar B gives this curve {ts shape. For g<Bc<1, the infiltration
rate is abating wih time {the usual case) and for &1 inf{ltration is increasing or augmenting with time
(the exceptional case).

The magnitude of parameter B in Kostiakov's equation reflects the net effect of numercus interrelat-
ed and interacting infiltration abatement and augmentation processes and conditions (Dixon, 1975b and
1976). The abatement processes and conditions include (1) decreasin capillary pressure gradient due to
deepening wetting front; (2) surface sealing under raindrop impact; ?3) decreasing capillary pressure
gradient due to increasing moisture content with depth; (:S soil settling causing macropores to collapse;
(5) decreasing sofl wettability with depth; (6) increasing water repellency with depth; (7) decreasing
available storage space with time; (8) decreasing storage space with depth because of {ncreasing moisture
content, rock, etc.; (9) decreasing macroporosity both in number and continuity with depth; (10 swelling
of clay colloids with corresponding shrinkage of macropores; (11) anaerobic s)ine formations (12) rising
soil air pressure and the consequent entrapment of soil air in macropores; and (13) freezirg of the in.
filtrated water with consequent blockage of fluid flow routes. The augmentation processes and conditfons
include (1) increasing flow dimensionality with time; (2) eluviation and 11lluviation leading to micropipe
formation; (3) increasing soil wettability with depth; (4) decreasing water repellency with depth; (5)
increasing ponded-water depth with time; (6) soil water absorption of entrapped air; (7) macropore forma-
tion through solution of soluble salts; (8) increasing ponded surface area with time; and (9) melting of
soil ice by the infiltrated water,

Parameter B values ranging from 0.0 to 0.5, 0.5 to 1.0, and 1.0 to 1.5 indicate the dominance of
abatement factors, little deminance of either abatement or augmentation factors, and dominance of augmen-
tation factors, respectively. Since the abatement and augmentation processes and factors interact with
each other in different combinations and intensities to control the time-weighted means for hydraulic
conductivity and hydraulic gradient, parameters 4 and B in Kostiakov's equation are interrelated.
Kostiakov's equation is a general equation in a relative sense, since parameter B can assume values appro-
priate for almost any combination of the abatement and augmentation processes. In contrast, the equa-
tions of Darcy and Ostashev represent special cases of Kostiakov's equation (Dixon, 1976). Philip's
equation, as indicated previously, is essentially a combinaticn of these two special cases. The form of
Darcy's equation accounts for no infiltration decay or augmentation, and those of Ostashev's and Philip’'s
account for only one of the infiltration abatement and augmentation factors; i.e., the decrease in capil-
lary pressure gradient resulting from the increasing distance of the wetting front from the ponded-water
source.

The equations of farcy, Ostashev, and Philip are often said to be physically based -- meaning that
the parameters have physical significance. Such physical significance, however, is restricted to the
simple ideal infiltration systems for which these equaticns were derived. A1l infiltration equations
are, or beceme, empirical when applied to the complex soil and water-source conditions found in crop,
forest, and rangelands. The magnitude of a parameter determined by fitting an infiltration equation to
data from such land areas, usually reflects conditions not present in the simple ideal system. Conse-
quently, an adequate physical interpretation of the paraceter must account for the major factors affect-
ing this parameter in the natural infiltration system being studied. To assume that the theoretical
physical significance stil) holds can be extremely misleading, thercdby eading to much confusion,

PROCEDURE

EVALUATION CRITERIA

Evaluation criteria were developed to (1) facilitate fnitial screening of the many infiltration
equations for selecting several for subsequent fitting accuracy tests and {2) guide final selectfon of
the best equation for modeling the AET concept. These criterfa included:
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6. Select infiltration equation giving the most accurate data fit by ranking the data group
means and thefr standard deviations,

As reflected in steps 3 through 6, the untransformed equations {with the two exceptions) were used
to determine data fitting accuracy. The magnitude of correlation coefficients for the transformed equa-
tions of Philip and the medified Philip equations were not useful in evaluating fitting accuracy. This
type of linear transformaticn often causes the regression line slope to fluctuate around zero, with con-
sequent low correlation coefficients, even though the equation fit might be quite accurate, as indicated
by closeness of observed and calculated infiltration values. Nevertheless, these transforms provided a
reliable {and simple) methed for estimating parameter values as verified by a iterative computer method
for accurately determining parameter values. The statistical tests of fitting accuracy referred to in
step 4 included the (1) relative mean absolute deviation (RAD) of calculated infiltration from observed
infiltration, (2) slope of the regression line (SRL) for calculated infiltration versus observed infil-
tration, (3) intercept of the vertical axis (IV4) by the regression line for calculated infiltration ver-
sus observed infiltration, and (4) coefficient of determination (CD) for the 1inear regression of calcu-
lated infiltration versus cbserved infiltration. The accuracy of equation fit approaches perfection as
the means for RMAD, SLR, IVA, and €D approach zero, one, zero, and one, respectively; and as the standard
deviatfons for RMAD, SLD, IVA, and CD all approach zero.

DATA SOURCES

Infiltration and rainfall data sets used in evaluating the eight infiltration equations are summar-
ized in Tables 3 and 4. Published rainfall data (Table 5) were selected from locations near the field
infiltration sites of the authors and their coworkers in order to generate reference rainstorms for use
in interpreting the infiltration data.

Table 3. Cumulative Infiltration Data Used to Test Fitting Accuracy of Eight Infiltration

Equations,
SOILS NURBER “DATA  TEST
kgg“gég:ég) AND INFILTROMETER DESCRIPTION OF TESTS  POINTS  TIME
VEGETATION AND REPS, PER TEST (HOURS
U.S. Survey, 68 soil Hide range Constant-head, single ring, 124 5 3
sites (Free et al., in both 23 cm 0.D., 61 cm Yong 24
1940)
Wisconsin, Montana, Wide range  Modified Purdue sprinkling 15 8 2
Nevada, and Arizona in both type, 10 covbr full cone noz- 2
soil sites (Dixon, zle, 1-meter-square plot frame
1977) {Dixon & Peterson, 1964 & 1968)
Site near Fallon, NV Loamy Border-irrigation type, 1-meter- 12 10 3
(Dixon & Linden, Border~ square plot frame, ponded-water 2
1972) irrigated  depth same as variable irriga-
alfalfa tien head
Site near Reno, NV Loamy Double-square closed-top type 59 8 ?
Border- (Dixon, 1975a) 5
irrigated
alfalfa
Santa Rita Experi- Loamy to Modified Purdue sprinkling type, 2 8 1
mental Range, Cont- sandy 10 cavhr full-cone nozzle, 1- 12
inental, AZ (Authors, Partial meter-square plot frame (Dixon &
unpubl ished) grass Peterson, 1964 & 1968)
cover
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Table 4. Rainfal) Maximum Depth-Duration Data Used to Test Fitting Accuracy of Eight Infiltration

Equations.
FREQUENCY HUMBER DATA MXPa
LOCATION(S) AND SOURCE TESTED OF POINTS DURATION
(YEARS) TESTS PER TEST (HOURS)
1. Madison, WI; Sidney, MT; Reno, NV; 1, 10, 100 30 6 2
Tozbstone, AZ; & Continental, AZ
(Hershfield, 1961)
2. Madison, MI; Williston, ND; Miles Max ioum H 6 2
City, MT: Reno, NV; Tucson, AZ Recorded
(Shands and Azmerman, 1963)
3. WMalnut Gulich Experimental Watershed, 148100 20 6 1
Tembstone, AZ (Authors, um h

RESULTS AND DISCUSSION

EQUATION RANKING

The last step in the f{itting procedure daescribed previously was to select the infiltration equatfen
giving the most accurate data fit by ranking data group means and their standard deviations. In the
ranking of each data group, the means and standard deviations for the four fitting-accuracy statistics
(RMAD, SLR, IVA, and CD) were all given the same weight, Then each data group was weighted equally to
determine the grand ranks given in Table 5. The overal) grand rank may be determined from the “rank
total” column in this table.

In general, the rank of an equation reflects its ability to accurately predict the nature of the
time dependency of cumulative infiltration or maximum depth rafnfall relative to the other equations. In
turn, the equation's ability to correctly assess this time dependency s a function of the exponents of
time appearing in the equation (Table 6). As a group, the four modified equations (No. S to 8) ranked
better than the four historic equatfons since the time exponents of these equations were especially cho-
sen to be appropriate for complex natural infiltration systems. Darcy's equation (No. 4) ranked surpris.
ingly well relative to the other historic equations, apparently because of some strong infiltratfon aug-
mentation processes operative under sprinkled-water infiltration in semiarid regions. Increasfng surface
ponded area (and depth of pondingf and increasing capillarity with soi) depth interact to produce S-
shaped cumulative infiltration cunves (Dixon, 1977), The straight 1ine of Darcy's equation fits such
data better than the curves of the other equations. However, Kostiakov's equation fits the S-shaped in-
filtration curves almost as well as Darcy's equation since the fitted-parameter B will approximate unity
in such cases. Because of its constant term, Darcy's equation stil) has a slight advantage over
Kostiakov's for fitting this kind of data,

Table 5. Table 6.

Summary Ranking of Eight Infiltration Equatiens Approximate Proportionality of Cumulative Infil.
Relative to Their Ability to Accurately Fit Data tration and Powers of Time for the Eight Infil-
from the Sources Given in Tables 3 and 4, tration Equations Evalvated.
EGUATTON N - EQUATTON — POWERS ATt
NUMBER TION DATA DATA TOTAL NUMBER SMALL TIMES LARGE TIMES

(1) 5 2 7 o) >0.0 >0.0

(2) 6 3 9 (2) 0.5 1.0

(3) ? 5 12 {3) 0.5 0.5

(4) 4 8 12 (4) 1.0 1.0

(5) 1 7 8 (5) 0.1 1.1

(6) 2 6 8 (6) 0.2 1.2

(7) 3 4 7 (7) 0.3 1.3

(8) ] ] 5 (8) 0.5 0.8

The poorest fits of infiltration data were obtained with Philip's and Ostashev's equations (No. 2
and 3) since they generally tend to overestimate infiltration at smll times, and sometimes underestimate
it at large time§. Where early infiltration abatement processes are strong, the overestimation of infil-
tration by the first term in Philip's equation 1s compensated for by the second term which becomes
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negative in the least-square fitting procedure. Consequently, the negative-valued parameter B for such a
natural infiltration system is a coefficient that corrects for the wrong assumption made in the first
term, rather than a coefficient related to saturated hydraulic conductivity and the gravitational contri-
bution as assumed in the equation's derivation (Taylor and Ashcroft, 1972),

The eguaticns containing two time terms (No. 2, 5, 6, 7, and 8) have an inherent data fitting advan.
tage. However, this advantage is diminished somewhat if time exponents are inappropriate. The exponent
in the first term should be relatively small to reflect the rapid rate of infiltration abatement at smll
times, whereas the exponent in the second term should be relatively large to reflect the slow rate of in-
filtration abatement (sometimes actually augnentation) at large times. Our results indicate that an ex-
cellent fit for a given set of data can be obtained by letting x in equation Ko. 9 equal one standard
deviation less than the mean parameter  in Kostiakov's equation, and by letting y equal cne standard
deviation greater than this paraceter's mean value, where parameter 8 is calculated by the Jeast.squares
linear regression method or estimated by simply dividing the 60-minute infiltration rate by the 60-minute
infiltration volume.

whenever the net effect of interacting (and often compensating) infiltration abatement and augment-
ation processes caused infiltratfon to proceed approximately at the power(s) of time of one of the infil-
tration equations, then that partfcular equation would fit the data quite well. However, such circum-
stantial and fortuitous equation fits should not be construed as verifying theory or the physical sound-
ness of the equation. Adequate validation of theory requires that an equation accurately fit the data
for the reasons assumed in the derivation of this theory.

The results of this fitting study indicate that Darcy's equation fits infiltration data accurately
when infiltration approaches linearity as caused by weak abatement processes or strong augnmentation pro-
cesses, or a combination of the two, Therefore, accurate fitting of Darcy's equatfon was favored by a
(1) microrough macroporous soil surface, (2} sprinkled-water source, (3) initially wet soils, and (4)
semiarid or arid climte. Darcy's equation fitted data pcorly when infiltration abatement processes were
relatively intense, such as in the case of a rapidly sealing soil surface under raindrop impact.
Ostashev's and Philip's equations fitted infiltration data accurately when infiltration abatement and
augmentation processes were at moderate levels of intensity. Thus, accurate fits were obtained for soils
that were (1) initially dry and fully wettables (2) stable, smooth and microporous at the surface; (3)
completely covered with vegetation and (4) relatively deep.

Of the four historic equations, only Kostiakov's equation satisfied evaluation criteria No, 7 and 8
by consistently fitting infiltration data accurately regardless of the intensities and combinations of
the various infiltration abatement and augmentation factors. Kostiakov's equation also satisfied each of
the remaining 14 evaluation criteria as well as, or better than, the other equations (Table 7). Although
the four modified equations fit the data slightly better than Kostiakov's equation (Table 5), they are
more complex and, thus, more difficult to interpret both mathematically and physically. The results of
this study indicate that Kostiakov's equation is a general infiltration equation possessing sufficient
flexibility to account for a wide range of natural conditions affecting infiltration,

Table 7. Evaluation Criteria Satisfied by Each of Eight Infiltration Equations.
TVALUATION CRITERION SATISFIED (+)

EQUATION LIST NUMBER*
NUMBER
1 2 31 4 6 7 8 9 10 11 12 13 14 15 16 TOTAL

) LI + 0+ o+ 4 + + + + + + + 16
(2) + 4 + 0+ + + + + 8
(3) * + + + 0+ + + + 8
(4) LI + + + 6
(%) + + + 0+ ¢+ 4 + + + 1
(6) + * * + ¢+ + + + + + n
{7) L ¢+ o+ 4+ + + + n
(8) L A 1 + + + 9

*Mumerical 1isting is given in secticn entitled "Evaluatien Criteria.”

The accuracy of equation fit to the rainfall data (Table 5) may also be interpreted with the aid of
the time exponents given in Table 6. A graphical plot of max{mm rainfall depths versus their durations
reveals a marked abatement (convex curvature upward) both at small and large times. Therefore, the rel-
atively accurate fit of equations Ho. 1 and B and the inaccurate fit of equation No. 4 to the rainfal)
data would be anticipated from the relative magnitude of the time expconents in these equations, Thus,
Kostiakov's equation appears well suited to modeling a reference rainstorm of this type in addition to
cumylative rainwater infiltration. This hypothetical storm will tend to overestimate cumulative rainfall
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for the specific return frequency, especially during the first 30 minutes. The physical signiffance of
md‘e’lin?]re:erence rainstorms with Kostiakov's equatfon fs being studied, and will be discussed in great-
er detafl elsewhere.

EQUATION SIGNIFICANCE

The equation of Kostiakov has both mathematical and physical significance for the natura) infiltra-
tion systems ft attempts to model. The general physical significance of Kostiakov's equation relative
to the other equations was briefly discussed in an earlier section,

Nathematically, Kostiakov's equation is extremely simple, with infiltration volume I, being ex-
pressed as a one-term power functfon of time. Infiltration rate Ip and the deceleration Ip in this rate
are given by the first and second derivative forms of Kostfakov's equation (Table V). The integra) and
derivative forms of Kostiakov's equation Indicate that where 0 < B < 1

) I, =0and I, and I, are undefined for T = 0;
{2) I,~0,Ipg+=and I, +«as T+ 01 and
{3) Iu*o.IR+aandID»oasT~w.

Thus, the infiltration volume increases at a decreasing rate monotonically with increasing time; and the
infiltration rate and its deceleration decrease at a decreasing rate approaching zero asymptotically at
large times. The condition 0 < B < 1 holds for most data sets from natural {nfiltratfon systems; however,
infrequently the condition B > 1 prevails, indicating that the infiltration rate is increasing with time,

The mathematical {interpretation of the parameters in the integral and derivative forms of
Kostiakov's equation is readily apparent, 1If the unft for time s hours, then parameter 4 may be inter-
preted as efther the first-hour infiltration volume I, or the mean first-hour {nfiltraticn rate Iyz; the
parameter product AP is the instantanecus {nf{ltratfon rate I at the end of the first hour or at 7 = 1,
parameter B is first-hour end rate divided by the mean rate or B = Ig/Tp for T = 1, and the time coeffi-
cient AB(1-8)} 1s the deceleration (defined as the negative of acceleration) of the infiltration rate at
T = 2. Thus, sets of infiltration data may be conveniently and meaningfully surmarized in terms of the 4
and 8 parameters and the time pericd upon which they are based. Such sunmarizations give the firste-hour
infiltration and its abatement ratio and permit calculation of infiltration volume, rate, and decelera-
tion for any selected time. Parameter A usually ranges from 0 to 20 (assuning I, is in cm) and gives the
integral curve its magnitude, whereas parameter B usvally ranges from O to 1, and gives the integral
curve its shape.

The A4 and B parameters may be quickly estimated from infiltration data since 4 = I, and AB = Ip at
T = 1; however, better estimates are usually obtained by transforming the integral form to obtain the
linear equation:

InI wlndsbinr,

which can be least-square fitted to infiltration data. Such fits are easily performed with hand calcue
lators programmed for simple 1inear regressfon analysis.

A physical interpretation of Kostiakov's equation and its parameters relative to the AEI concept is
possible, although not as readily apparent as the preceding mathematical interpretation. In general, the
AET concept assumes that all infiltrating surface water is subsequently stored in the soil profile. Thus,
1, becomes the storage volume of infiltrated water, Ip is the storage rate, Ip {s the deceleratfon in
storage rate, T is the elapsed time after incipient ponding during which storage has been occurring,
parameter A4 is the storage during the first hour, 4B is the storage rate at the end of the first hour,
:"ld B is a dimensionless ratio of A5 and 4 which reflects the degree of storage rate abatement during the

rst hour,

Specifically, the AET concept assumes that the two interacting and interrelated sofl surface physi-
ca) properties - - microroughness and macroporosity - « control free-water infiltration into soils.
Surface microrcughness and soil macroporosity intercomnnect and interact with each other to form ponded-
water intake and sofl-afr exhaust circuits that govern the entry of water into soils. ODixon (1977) has
shown that the hydraulic equivalent of these two surface conditions {s the effective surface head; where-
as the biological equivalent appears to be plant 1itter. Thus, the AEI concept as presently formulated
indicates that infiltration is controlled at the sofl surface - - physically by interconnected micro-
roughness and macroporosity; hydraulically, by effective surface heads and biclogically, by plant litter.

Physical interpretation of Kostiakov's equation in terms of the ALl concept involves relating the
parameters of this concept to those of Kostiakov's equation. Dixon (1977) found that parameters A and 8
were sensitive to standard microroughness-macroporosity treatments. Assigning equivalent effective sur-
face heads to these treatments, facilitated expressing 4 and B parameters as functiens of surface treate
ments. Relationships between 4 and B and effective surface head were also determined., A closed-top in-
filtrometer was used to obtain infiltration data (Table 3) under effective surface heads ranging from -6
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to +6 cm of water head, Parameters A and 8 were then determined by least-square fitting of Kostiakov's
equation to the data points as shown in Fig, 1. These parameters were then related to effective surface
head - - again by the least-square linear regression methed (Fig. 2.). Graphs 1ike this can serve to
quantify the afreearth interface concept of infiltration and thereby facilitate absolute control over in-
filtration through soil surface management, The microroughness-macroporosity and plant litter equiva-
lents of effective surface head can also be included on the horizonta) axis. In practice then, soil sur-
face management would be directed to achieving levels of the AEI concept parameters that would give the
desired control over rainwater infiltration.

Rainwater excess (or runoff) can be approached similarly, except that a reference rainstorm s re-
quired for calculating the runoff data, This approach is {1lustrated in Fig. 3, 4, and 5 for the plant
litter parameter. For simplicity, only extreme levels of the plant litter parameter are shown, These
figures indicate that (1) litter provides a factor-of-ten control over infiltration (Fig. 3), (2) runoff
from the litter-covered surface under the 100-year storm is negligible (Fig. 4), and (3) runoff from the
bare surface is 90% of the total cumulative rainfall (Fig. 5). Dixon (1977) has also reported an order-
of-magnitude control of infiltration for the other two ALl concept parameters.

In the example shown in Fig. 5, potentia) runoff or precipitation excess is determined by subtract-
ing accumulative infiltration from accumulative rainfall, using either the actual data or data calculated
with the fitted Kostiakov equatiocns. This provides a set of calculated runoff data to which Kostiakov's
egquation can again be fitted. The resulting 4 and B parameter for runoff can then be analyzed in a ran-
ner similar to that shown in Fig. 2 for infiltration, This approach should facilitate prediction and
control of runoff not only from individual plant-sized land areas, but from larger land arcas as well,
The physical significance of modeling precipitation excess or rainwater runoff with Kostfakov's equation
will be discussed in a subsequent paper.
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Fig. 3. Inf{ltration volume Iy as a function
of time for 1itter-covered and bare soil sur-
faces with Jeast-square determined Kostiakov
equations and correlation coefficients for the
1inear transforms of these equations.

n 1 S T 3 Al — et
on 3% an 100
TIME (tv)
woF T T T T T Y T b4 © T T L ¥ T T T ™)
L %
o} E
A
& 2 ]
. &
d & di=
T a5 O §
§ el s
s r 1ie
@ [
a® 1 ‘.0& {1
¢
o
- AN -
4
AN Y
H 4 e
0 - i, i 1 s ) S— 4 —t)
aa G 0% or 100
1IME () ’ TIME (v)
Fig. 4. Precipitation Py and infiltration Fig. §. Precipitation Py, runoff 8,, and infiltra-
volume I, for a litter-covered surface with tion volume I, for a bare soil surface with least-
least-square determined Kostiakov equations square determined Kostiakoy equations and correla-
and correlation coefficients for the )inear tion coefficfents for the linear transforms of
transforms of these equatfons. these eguattons,

SUMMARY_AND CONCLUSIONS

kosttakov's equation was selected for modeling the AEr concept of infiltration because of its simple
mathematical form, its ability to accurately and consistently fit data from diverse sources, and {ts
meaningful parameters which provide a convenient method for sumarizing {nffltration data and predicting
and controlling fnfiltration and vunoff. Use of this equatton for quantifying the AET concept involves
the deternination of functional relationships between eguation parameters and concept parameters,

Kostiakov's equstion also accurately fits maximus-depth rainfall-durationn data that is widely
available. This provides a reference rainfall curve for comparing with fnfiltration curves, and thys,
the opportunity for calculating rainfall excess or potential runoff. Kostiakov's equation will also fit
such calculated data and the resulting parameters can then be related to the AES concept parameters, In-
filtration and runoff control would then be achieved by directing 1and maragement practices to effecting
appropriate levels of the AEI concept parameters. The AEI concept has a bfological, a physfcal, and a



hydraulic parameter, each of which appear to exert an equivalent and controlling influence on the infil-
tration process. These parameters are plant litter, surface microroughness-macroporosity, and effective
syrface head.

Additional research is needed to (1) develop better methods for field evaluating the AEI concept
parameters, (2) evaluate the concept parameters under diverse field conditions, (3) relate measured para-
meters to measured infiltraticn, and (4) develop economic methods for imposing and maintaining infiltra-
tion and runoff control treatments on large land areas. Since the green plant is the best land manage-
ment tool available for holding soil and water resources in place and for increasing the sofl resource,
the sample stze for this research should be approximately equal to the space cccupled by several crop
plants in a monocylture, and several plant communities in a multiculture. Control of key hydrologic pro-
cesses at this spatial scale will help keep the vital land resources - - sofl and water - - within easy
reach of plant roots. Consequently, such control can lesd to improved land management practices for in-
creasing and stabilizing land productivity.
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