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s u m m a r y

Infiltration is important to modeling the overland transport of microorganisms in environmental
waters. In watershed- and hillslope scale-models, infiltration is commonly described by simple
equations relating infiltration rate to soil saturated conductivity and by empirical parameters defining
changes in infiltration rate with soil water content. For the microbial transport model KINEROS2/
STWIR used in this study, infiltration in unsaturated soil is accounted for by a net capillary drive
parameter, G, in the Parlange equation. Scarce experimental data and multiple approaches for estimat-
ing parameter G introduce uncertainty, reducing reliability of overland water flow and microbial
transport models. Our objectives were to evaluate reliability and robustness of three methods to esti-
mate parameter G and associated accuracy and uncertainty in predicting runoff and fecal coliform (FC)
transport. These methods include (i) KINEROS2 fitting to the experimental cumulative runoff data; (ii)
estimating solely on soil texture; and (iii) estimating by individual pedotransfer functions (PTFs) and
an ensemble of PTFs from basic soil properties. Results show that the most accurate prediction was
obtained when the G parameter was fitted to the cumulative runoff. The KINEROS2-recommended
parameter slightly overestimated the calibrated value of parameter G and yielded less accurate
predictions of runoff, FC concentrations and total FC. The PTFs-estimated parameters systematically
deviated from calibrated G values that caused high uncertainty in the KINEROS2/STWIR predictions.
Averaging PTF estimates considerably improved model accuracy, reducing the uncertainty of runoff
and FC concentration predictions. Overall, ensemble-based PTF estimation of the capillary drive can
be efficient for simulations of runoff and bacteria overland transport when a single effective value
is used across the study area.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Concerns about surface water safety stimulated the develop-
ment of predictive models to estimate contaminant concentrations
in runoff water during runoff events, and its transport to surface
water sources. Among these are COLI (Walker et al., 1990), Hydro-
logic Simulation Program FORTRAN (HSPF) (Bicknell et al., 1997),
Spatially Explicit Delivery Model (SEDMOD) (Fraser, 1999), PROM-
ISE and WATNAT (Medema and Schijven, 2001), Water Assessment
Model with ArcView interface (WAMView) (Bottcher and Hiscock,
2001), Loading Simulation Program in C++ (LSPC) (Tetra Tech, Inc.,
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2002), Soil and Water Assessment Tool (SWAT) (Sadeghi and
Arnold, 2002; Neitsch et al., 2005) and a recently developed
add-on module, STWIR (Simulator of Transport With Infiltration
and Runoff) (Guber et al., 2010), for the KINEROS2 model
(Kinematic Runoff and Erosion Model) (Woolhiser et al., 1990;
Semmens et al., 2008; Goodrich et al., 2012; www.tucson.ars.
ag.gov/kineros).

The most important component of these models, infiltration,
controls rainfall partitioning between overland and subsurface
flow and, therefore, partitioning of contaminant fluxes. Among
the most frequently used approaches to modeling watershed-
and hillslope-scale infiltration into the soil are the Green and Ampt
model (Green and Ampt, 1911) implemented in SWAT software,
the Philips approach (Philips, 1957) utilized in HSPF and LSPC mod-
els, and the runoff curve number (US SCS, 1972) used in COLI. The
KINEROS2/STWIR model implements the three-parameter infiltra-
tion equation (Parlange et al., 1982) to calculate rate of infiltration
into the soil. Different theoretical concepts, scales, and input in
various infiltration models introduce substantial uncertainty into
simulation results. That is why evaluating uncertainty has become
important to microbial water quality predictions in Total Maxi-
mum Daily Load (TMDL) modeling (Shirmohammadi et al., 2006).

The importance of soil infiltration capacity for contaminant
removal from overland flow has been recognized in designing
and evaluating efficiency of vegetation filter strips (VFS). For
instance, Misra et al. (1996) determined that infiltration of inflow
into VFS was the major factor in reducing herbicide overland trans-
port. Roodsari et al. (2005) found high infiltration capacity of VFS
in sandy loam soil significantly reduced FC transport, even on steep
slopes. Sullivan et al. (2007) also concluded that infiltration was
primarily responsible for attenuation of FC surface transport from
pasturelands in manure-treated loamy soils. Fox et al. (2010) and
Poletika et al. (2009) noted that pesticide removal efficiency of
VFS was proportional to the fraction of infiltrated water (Sabbagh
et al., 2009). Fox et al. (2011) studied E. coli transport in runoff
boxes and found that bacteria mass reduction in the overland flow
linearly increased with percent of infiltration. Munoz-Carpena
et al. (2010) conducted a global sensitivity and uncertainty analysis
in three VFS studies and showed that saturated hydraulic conduc-
tivity was the most important variable for predicting infiltration
and runoff.

As a general understanding of infiltration’s influence on over-
land contaminant transport has developed, the most attention
has been paid to the saturated hydraulic conductivity. Relatively
little has been learned about the effects that other parameters have
in controlling infiltration into the soil, such as the net capillary
drive G that affects soil unsaturated hydraulic conductivity in the
Parlange infiltration equation (Parlange et al., 1982). The Parlange
infiltration equation used in the KINEROS2/STWIR model has been
successfully applied in assessing uncertainty of fecal coliform (FC)
overland transport associated with spatially-variable bacteria con-
centrations in surface-applied manure (Guber et al., 2011) and
uncertainty of FC bacteria removal from VFS under overland flow
conditions (Guber et al., 2009).

The scarcity of experimental data and multiplicity of the
approaches for estimating parameter G introduce uncertainty and
reduce reliability of overland water flow and microbial transport
models. Kim et al. (2013) developed field-scale values for rain-
fall-runoff parameters associated with the KINEROS2/STWIR model
from 36 small plots distributed throughout a field over four sea-
sons, resulting in 144 runoff experiments. Inherent difficulties
included reliance on a nonlinear runoff model, modeling parame-
ters that are difficult to estimate, a highly parameterized model
with respect to available data, and a lack of concurrent field-scale
monitoring. Typically, small plot-scale (runoff plots) measure-
ments of infiltration during storms produce considerably more
overland flow as compared to hillslope or small catchment scale
measurements. As compared to hillslopes or small catchments,
small plots have relatively smooth and more uniform surfaces, less
heterogeneous rainfall inputs (Sidle et al., 2007; Gomi et al., 2008a,
2008b), less heterogeneous soil physical properties (including
effects of interconnected preferential flow that influences infiltra-
tion), magnified effects of exposed rocks, roots, and organics,
burden effects (along pots) that tend to increase overland runoff,
and soil crusts or hydrophobic phenomena which are magnified.
This study complements the plot-scale studies by investigating
field-scale values for rainfall-runoff parameters associated with
the KINEROS2/STWIR model and aims to fill the gap between
how data sources and methods of parameter G estimation
influence uncertainty of microbial concentration predictions in
the surface runoff. Our objectives were to evaluate uncertainty of
the net capillary drive associated with the sources and methods
of the parameter estimation and examine how this uncertainty
translates into accuracy and uncertainty of runoff and microbial
overland transport predictions.
2. Materials and methods

2.1. Overland microbial transport model

Overland transport of manure-born microorganisms in this
study was computed based on advection–dispersion equations,
coupled with the kinematic wave equation. The following pro-
cesses were included in the microbial model:

� microorganism release from surface applied manure;
� advective–dispersive transport of microorganisms in runoff

water;
� infiltration of microorganisms into the soil;
� straining of microorganisms from infiltrating water by

plant litter and vegetation layer;
� exchange of microorganisms between runoff water and the

mixing zone of soil at the surface; and
� attachment and detachment of microorganisms in the solid

phase.

The KINEROS2 (Woolhiser et al., 1990) model was implemented
to simulate one-dimensional overland flow within an equivalent
rectangle representing an arbitrarily shaped watershed with uni-
form or curvilinear slope profiles. The model employs a power-
law equation to describe the relationship between the ponding
depth, H, the storage of water per unit area [L], and flux, q, the
water discharge per unit width [L�2 T�1]:

q ¼ aHm ð1Þ

where parameters a and m represent surface properties, i.e. slope,
roughness, and flow regime. These parameters were computed
based on the Chézy hydraulic resistance equation:

a ¼ CS1=2 and m ¼ 3=2 ð2Þ

where S is the surface slope [L L�1], and C is the Chézy friction coef-
ficient for overland flow.

Eq. (1) used in conjunction with the mass conservation
equation:

@H
@t
þ @q
@x
¼ R� I ð3Þ

where R is the precipitation rate [L T�1], I is the infiltration rate
[L T�1], t is time [T], and x is the distance along the slope [L].

The infiltration rate is computed in KINEROS2 using the three-
parameter infiltration equation (Parlange et al., 1982):
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I ¼ Ksat 1þ r
expðrI�=BÞ � 1

� �
ð4Þ

where Ksat is the saturated hydraulic conductivity [L T�1], r is the
dimensionless parameter that represents soil type, I* is the infil-
trated depth (L), B ¼ ðGþ hwÞðhs � hiÞ, G is the net capillary drive
[L], hw is surface water depth [L], and hi and hs are the initial and sat-
urated soil water content, respectively [L3 L�3].

The add-on module STWIR developed for the KINEROS2 model
employs the convection dispersion equation for bacteria cells in
runoff in the form:

@HCr

@t
þ @qCr

@x
¼ @

@x
aLq

@Cr

@x

� �
� @Sm

@t
� dðkaCr � kdqSsÞ

� ð1� ksÞICr ð5Þ

where aL is the dispersivity [L]; d is the thickness of the mixing zone
[L], i.e., thickness of the soil surface layer that actively interacts with
the overland flow; Cir and Cr are cell concentrations in irrigation and
runoff water, respectively, [M L�3]; Sm is the cell concentration in
the manure applied to the soil surface [M L�2]; and Ss is the cell con-
centration in the solid phase of the soil mixing zone [M M�1]; ka and
kd are the attachment and detachment rates of bacteria at the solid
phase [T�1], respectively; q is the soil bulk density in the mixing
zone [M L�3]; and ks is the bacteria straining coefficient, i.e., the
fraction of infiltrated cells which are irreversibly filtered out by
plant litter and vegetation layer.

The mass conservation equation of bacteria in the soil mixing
zone is:

dq
@Ss

@t
¼ dðkaCr � kdqSsÞ þ kf ð1� ksÞICr ð6Þ

where kf is the fraction of infiltrated cells which are filtered out
within the soil mixing zone.

The net release of bacteria from surface-applied manure is
assumed to be proportional to the precipitation rate:

@Sm

@t
¼ �CmR ð7Þ

where Cm is the concentration of released bacteria calculated
according to the Bradford and Schijven model (2002):

CmðtÞ ¼
C0hmam

R
ð1þ ambmtÞ�ð1þ1=bmÞ ð8Þ

where hm is the depth of applied manure (L), am (T�1) and bm

dimensionless are parameters defining the shape of the release
curve, and C0 is the initial content of bacteria cells in the applied
manure (M L�3). Applicability of this model has been confirmed
for different irrigation rates in field experiments (Guber et al.,
2006) where values of am were found to be closely related to the
irrigation rate R, according to the linear regression equation

am ¼ 0:036þ 0:860R; R2 ¼ 0:988 ð9Þ

for irrigation rates ranging from 2.51 to 6.93 cm h�1.
Since bacteria transport in this study was modeled for a single

runoff event that lasted 4.3 h, microorganism die-off in manure,
runoff water, soil mixing zone and soil solid phase was disregarded
in simulations.

Eqs. (1)–(8) were solved numerically using the implicit finite
difference scheme. Initial and boundary conditions were set as
described below. The KINEROS2 numerical code (Woolhiser
et al., 1990; Semmens et al., 2008; Goodrich et al., 2012) was
used to solve the infiltration and runoff flow Eqs. (1)–(4). The
boundary conditions of zero ponding depth at x = 0 and an initial
condition of H = 0 for x > 0 were used. The front limitation
algorithm (Haefner et al., 1997) was applied to solve bacteria
transport Eqs. (5)–(7). The Dirichlet boundary condition of zero
concentration and the Neumann boundary condition of zero con-
centration gradient were set at the inlet and outlet boundaries,
respectively, and a constant initial concentration Cr = 0 at x > 0
was assumed for Eq. (5) with the absence of surface water.

2.2. Field experiment

The study of fecal coliforms (FC) transport in overland flow after
manure application was conducted at the OPE3 USDA-ARS research
site (Beltsville, Maryland). Detailed descriptions of the study area,
soil profile and experiment design can be found in Guber et al.
(2011). In brief, a rainfall 21.1 mm deep and lasting 1.5 h generated
runoff of 1.4 mm within 4.3 h from a 1.6 ha corn field on May 10
after applying dry bovine manure. An H-flume was installed at
the field’s edge to record the runoff hydrographs and to collect
water samples. The hydrograph was recorded at 1 min interval,
while water samples of 350 ml were collected at 5-min and 10-
min time intervals during the first and the second hours after the
initiation of runoff, respectively. Soil and manure samples were
taken randomly from 25 locations across the field before and
immediately after the manure application. FC concentrations were
determined in the runoff samples, soil and manure extracts by
plating 250 lL subsamples onto MacConkeys Agar and counting
with an Autoplate 4000 spiral platter (Spiral Biotech, Bethesda,
MD). In addition, 21 undisturbed soil samples were randomly
taken from the top 10-cm layer across the study area to measure
soil bulk density (BD) (Eijkelkamp Agrisearch Equipment BV, Gies-
beek, The Netherlands), soil texture (Gee and Bauder, 1986), and
organic carbon content (OC) (Nelson and Sommers, 1996).

2.3. Model calibration

The overland flow component of KINEROS2 was calibrated on
data from the May 10 runoff event. An 84 � 190 m rectangular pla-
nar overland flow domain with a slope of 2.7% toward the flume
was delineated using Arc/Info GIS hydrologic modeling tool
watershed to simulate the FC transport with overland flow. Spa-
tially-averaged soil properties and FC concentrations in soil and
manure were used as parameters and initial conditions for model
calibration. That is, soil characteristics of the simulation domain
were regarded as uniform and, despite individual soil property
measurements at 21 points, only a single set of soil parameters
including a single value of parameter G was used in the
simulations.

To calibrate the KINEROS2/STWIR model, we used PEST soft-
ware (Doherty, 2005) that solved the inverse problem of minimiz-
ing the least square errors between the observed and simulated
variables. These were the cumulative runoff for KINEROS2 and
the FC concentrations in runoff water, normalized by the FC con-
centration in applied manure for the STWIR model, respectively.

2.4. Estimating the net capillary drive parameter G

Three sources of data were used to estimate the values of
parameter G in the infiltration Eq. (4). The first was the measured
cumulative runoff hydrograph. Its G value was obtained during the
calibration of KINEROS2 with cumulative runoff data described in
Section 2.3.

The second source was soil texture class. Its G value was esti-
mated based on the analysis of Rawls et al. (1998). This approach
is suggested in the KINEROS2 manual (Woolhiser et al., 1990).
Since 20 of 21 sites were of the same soil texture class (sandy
loam), sandy loam was an input to determine the value of G param-
eter. The estimates obtained with this source will be referred to
later as KINEROS-recommended.
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The third source was basic soil properties: soil texture, bulk
density (BD), organic carbon content (OC), and sampling depth.
Fourteen pedotransfer functions (PTFs) were used in the study to
estimate G values from these soil properties (Table 1). Information
used as an input to PTFs included: soil texture in all PTFs, BD in 11
PTFs, OC content in eight PTFs, and sampling depth in three PTFs.
The PTFs utilized here to estimate the values of the parameter G
were based on two common water retention equations, Brooks–
Corey (1964) (BC) and van Genuchten (1980) (VG).

The first water retention equation is the Brooks–Corey (Brooks
and Corey, 1964) model, which establishes a power relationship
between soil volumetric water content h and matric pressure h in
the form:

h� hr

/� hr
¼

hb
h

� �k
; h > hb

1; h 6 hb

8<
: ð10Þ

where / is the soil porosity, cm3 cm�3; hr is the residual water con-
tent, cm3 cm�3; hb is air-entry pressure, cm; and k is pore size dis-
tribution index. The second is the van Genuchten water retention
(van Genuchten, 1980) model:

h� hr

hs � hr
¼ 1

1þ ðahÞn
� 	m ð11Þ

where hs is the saturated water content, cm3 cm�3; a is a parameter
corresponding approximately to the inverse of the air-entry value,
cm�1; and m and n are empirical shape-defining parameters.
Parameter m in the van Genuchten model was computed as
m = 1–1/n in this study.

Seven of the 14 used PTFs were based on the BC model, two
PTFs on the VG model, and five PTFs estimated pairs of water con-
tent and matric pressure data points to which the VG model was
fitted. Overall, the total number of parameter G predictors varied
from three to five in different PTFs. We intentionally selected the
PTFs that use different soil properties and water retention models
to avoid possible systematic bias in G estimates associated with
specific soil properties of the BC or VG model. A pedotransfer func-
tion calculator CalcPTF (Guber and Pachepsky, 2010) was used to
implement the PTF applications.

The Morel-Seytoux et al. (1996) equation was implemented to
compute the net capillary drive G from parameters of the
Brooks–Corey (BC) and van Genuchten (VG) models. For the BC
model, the net capillary drive was:
Table 1
Pedotransfer functions (PTFs) applied to estimate the net capillary drive G, along with soi

PTF no. Pedotransfer function Water retention equation P

S

BC-1 Saxton et al. (1986) BC +
BC-2 Campbell and Shiozawa (1992) BC +
BC-3 Rawls and Brakensiek (1985) BC +
BC-4 Williams et al. (1992) BC +
BC-5 BC +
BC-6 Oosterveld and Chang (1980) BC +
BC-7 Mayr and Jarvis (1999) BC +
VG-1 Wösten et al. (1999) VG +
VG-2 VG
VG-3 Tomasella and Hodnett (1998) WH-VG
VG-4 Rawls et al. (1982)a WH-VG +
VG-5 Gupta and Larson (1979) WH-VG +
VG-6 Rajkai and Várallyay (1992) WH-VG +
VG-7 Rawls et al. (1983)a WH-VG +

BC = the Brooks and Corey model parameter estimation.
VG = the van Genuchten model parameter estimation.
WH = estimation of water content at fixed matric pressure.
a Corrected for organic matter content according to Nemes et al. (2009).
G ¼ hb
2þ 3k
1þ 3k

ð12Þ

and for the VG model, G was:

G ¼ 0:046 mþ 2:07 m2 þ 19:5 m3

að1þ 4:7 mþ 16 m2Þ ð13Þ

A single value of G was used for each model simulation; how-
ever, three approaches to generating G value estimation from the
PTFs were implemented. In the first, a single value was computed
by averaging soil properties measured in 21 locations, then esti-
mating G values based on the soil property averages with each of
the 14 PTFs (averaging 1):

G1i ¼ PTFiðTexture�;OC�;BD�;DepthÞ i ¼ 1;14 ð14Þ

where � denotes average values of soil properties measured in the
21 locations, and i denotes the PTFs listed in Table 1. In the second
approach, we computed G values for each location with each PTF,
then averaged the results for each PTF (averaging 2) as:

G2i ¼
1

21

X21

j¼1

PTFiðTexturej;OCj;BDj;DepthÞ i ¼ 1;14 ð15Þ

where j denotes locations. Estimates of the G parameter obtained by
the two approaches are referred to later as PTF-estimated. The third
approach consisted of obtaining the G value for each location using
each PTF, then averaging the outcome of all PTFs for each location
as:

G3j ¼
1

14

X14

i¼1

PTFiðTexturej;OCj;BDj;DepthÞ j ¼ 1;21 ð16Þ

The G values estimated by this approach are referred to as ensem-
ble-average.

To evaluate the effect of predictors on accuracy of the PTFs,
model discrimination was performed using the Akaike Information
Criterion for small sample size, AICc (Burnham, 2002; Burnham and
Anderson, 2004) as:

AICc ¼ �2 logð£ðhÞÞ þ 2K þ 2KðK þ 1Þ
N � K � 1

ð17Þ

where £(h) is the likelihood of error function, N is the size of the
dataset, and K is the number of parameters used in the PTFs. Eq.
(17) was applied to the G value estimations from the soil properties
measured in the 21 location with all PTFs.
l properties (predictors) used in each PTF.

TF predictors

and Silt Clay Organic carbon Bulk density Depth

+ +
+ +
+ +
+ +
+ +
+ + +

+ + + +
+ + +
+ + + + +
+ + +
+ + +
+ + + +

+ + +
+ + + +
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2.5. Runoff and overland microbial transport simulations

The KINEROS2/STWIR model with calibrated transport parame-
ters described in the previous sections was implemented to simu-
late the runoff and the FC transport with overland flow for the
studied rainfall event. Model accuracy in predicting runoff and FC
concentrations was evaluated using Nash–Sutcliffe efficiency index
(NSE) and the modified index of agreement (MIA), given by Legates
and McCabe (1999):

NSE ¼ 1�
PN

i¼1ðPi � OiÞ2PN
i¼1ðOi � OÞ2

ð18Þ

MIA ¼ 1�
PN

i¼1jPi � OijPN
i¼1jPi � Oj þ

PN
i¼1jOi � Oj

ð19Þ

where Pi and Oi represent simulated and observed values of state
variables (cumulative runoff, FC concentration), O is the mean of
Oi and N is number of observations. The model performance was
considered acceptable for MIA > 0.75 (Köhne et al., 2005).

The uncertainty of parameter G and the associated uncertainties
in predicting runoff and FC overland transport by the KINEROS2/
STWIR model were evaluated for the PTF-estimated and the
ensemble-average G values. The measures characterizing uncer-
tainties were standard deviations of the estimated G values (rG),
simulated total runoff (rR), and the total FC transported with run-
off (rFC). The three approaches of obtaining G value from the PTFs
allowed us to evaluate two sources of uncertainty: the uncertainty
associated with spatial variability of soil properties and the uncer-
tainty associated with selection of the PTFs.

3. Results and discussion

3.1. Model calibration

The KINEROS2 calibration produced the following values of the
overland flow parameters: the Chézy friction coefficient C = 0.29,
saturated hydraulic conductivity Ksat = 4.83 cm h�1, net capillary
drive G = 10.0 cm, and the parameter r ¼ 1:0. The values of fitted
STWIR parameters obtained via calibration were: dispersivity aL =
3.53 m, FC attachment and detachment rates ka = 0.613 h�1 and
kd = 0.005 h�1, FC straining coefficients ks = kf = 1, and FC release
parameter bm = 0.150 (Guber et al., 2011).

3.2. Soil properties and estimation of parameter G from soil texture
class

Soil properties measured in the 21 locations varied spatially.
Even though 20 out of 21 samples belonged to the sandy loam
texture class, measured sand content ranged from 49.2% to 73.3%,
and silt content from 24.7% to 44.9% (Table 2), soil organic content
varied between 1.4% and 2.0%, and soil bulk density ranged from
1.349 g cm�3 to 1.576 g cm�3. The recommended value from the
KINEROS2 manual for the parameter G was 13 cm for these soil
properties.

3.3. Accuracy and uncertainty in estimating parameter G from
pedotransfer functions

Both spatial variability in soil properties and differences in
the PTFs resulted in highly variable values of G parameter
estimates. The PTF-estimates based on the averaged soil properties
(averaging 1) ranged over one order of magnitude (Table 3). In gen-
eral, the PTFs that used the van Genuchten equation generated
smaller G values (2.17–7.94 cm) compared to those obtained in
the KINEROS2 calibration (10 cm), as recommended in the KINER-
OS2 manual (13 cm) and computed using the Brooks and Corey
model (5.98–33.76 cm) values. Among the BC estimates, two PTFs
(BC-6 and BC-7) underestimated and the other five PTFs (BC-1
through BC-5) overestimated calibrated and KINEROS2-recom-
mended values of the parameter G. Consistently smaller G values
from the VG equation, compared to those obtained with the BC-
based PTFs, were ultimately caused by parameter hb, a multiplier
in Eq. (12). It can be shown that equivalent hb values estimated
with the VG-based PTFs are smaller than the BC estimates. To dem-
onstrate that, we employed relationships that convert parameters
of the VG water retention model to the parameters of the BC model
(Morel-Seytoux et al., 1996), we have:

p ¼ 1þ 2=m

h�b ¼
pþ 3

2apðp� 1Þ
147:8þ 8:1pþ 0:092p2

55:6þ 7:4pþ p2

� �

k ¼ m=ð1�mÞ

ð20Þ

The computed h�b values based on the PTF estimates of the van
Genuchten parameters m and a ranged from 1.3 cm to 5.1 cm,
and were considerably smaller than the hb values estimated with
the Brooks–Corey model (3.7–21.8 cm) for the averaged soil prop-
erties. Morel-Seytoux et al. (1996) have pointed out that the con-
version Eq. (20) was developed to produce similar infiltration
rates, as a function of time, for both BC and VG models, not neces-
sarily to produce similar water retentions. On the contrary, the
PTFs were designed to generate parameters for both models that
produce similar relationships between soil water content and cap-
illary pressure. Fig. 1a illustrates differences between hb values
obtained in fits of Eq. (10) to pairs (h, h) estimated with the PTF-
16 (Rawls et al., 1983), and h�b converted from parameters m and
a fitted to the same data. There is a linear relationship between
h�b and hb with high coefficient of determination (R2 = 0.959), a
slope of 0.12 and an intercept of 0.15, indicating that converted
values of the BC parameter hb were approximately eight times
smaller than those fitted to the pairs (h, h). Differences between
the BC- and VG-based PTF estimates were not drastic for parameter
k, yet converted values from the VG parameters systematically
overestimated the BC parameter k.

The calibrated value of the parameter G was used as a reference
for the PTF estimates since the KINEROS2 fit to the experimental
data presumably provided the smallest error of simulated cumula-
tive runoff. For both methods of soil property averaging described
in Section 2.4, the most accurate estimates of the parameter G were
obtained with BC-5, BC-6 and BC-7, and with VG-4, VG-5 and VG-6
PTFs (Table 3). The ranked accuracy of the PTFs, computed as an
absolute deviation of the estimate from the calibrated G value,
showed that the lowest ranks (11–14) pertained to the 3-parame-
ter BC-based PTFs, while the highest ranks pertained to the PTFs
that used organic carbon content as a predictor (Table 4). This find-
ing corroborates earlier PTF studies. For example, an overall
increase in the PTF accuracy with an increase in the number of pre-
dictors was observed for soil water retention (Schaap et al., 1998;
Twarakavi et al., 2009) and hydraulic conductivity prediction
(Schaap and Leij, 1998).

The uncertainty of G estimates, evaluated as a standard devia-
tion of the parameter G, differed for the water retention models.
In general, the BC-based PTFs produced more uncertain G values
compared to those VG-based. Interestingly, the largest standard
deviation values of the net capillary drive (rG), and thus more
uncertain results, were obtained with the PTFs that did not have
organic carbon as a predictor (Tables 3 and 4). This probably is
the reason for the overall improved performance of the VG PTFs
compared to the BC PTFs since five VG-based, but only two BC-
based PTFs, used organic carbon as a predictor.



Table 2
Soil properties in top 10-cm layer measured in 21 randomly selected locations.

Sampling location Sand Silt (%) Clay Bulk density (g cm�3) Organic carbon (%)

1 58.0 38.4 3.5 1.428 1.5
2 73.3 24.7 2.0 1.349 1.8
3 63.0 32.7 4.3 1.461 2.0
4 49.2 44.9 5.8 1.360 1.9
5 63.1 32.5 4.3 1.413 2.0
6 51.4 42.6 6.0 1.574 1.6
7 57.1 37.3 5.6 1.506 1.8
8 69.3 29.5 1.2 1.454 1.8
9 60.3 35.1 4.7 1.501 1.7

10 53.6 42.3 4.1 1.373 1.7
11 67.8 27.0 5.2 1.569 1.5
12 52.9 40.6 6.5 1.555 2.0
13 57.7 37.3 5.0 1.509 1.9
14 58.7 32.2 9.0 1.521 1.9
15 58.2 39.7 2.1 1.575 1.5
16 65.2 30.8 4.0 1.439 1.4
17 59.7 36.3 4.0 1.508 1.5
18 52.1 42.0 6.0 1.568 1.5
19 67.0 30.0 2.9 1.549 1.5
20 66.9 29.6 3.5 1.529 1.6
21 53.4 36.3 10.3 1.576 1.5

Average 59.9 35.3 4.8 1.491 1.7
r 6.62 5.59 2.16 0.074 0.2

r stands for the standard deviation of soil properties.

Table 3
Values of net capillary drives G1 and G2 obtained using model calibration recommended by the KINEROS2 manual and estimated using PTFs, with performance statistics (AICc,
NSE and MIA) of the KINEROS2/STWIR simulations conducted with the estimated G values.

Source of G Parameter averaging 1 Parameter averaging 2

G1 (cm) NSE MIA G2ðrGÞ (cm) AICc NSE MIA

Runoff FC Runoff FC Runoff FC Runoff FC

KINEROS2 calibration 10.0 0.99 0.77 0.96 0.77
KINEROS2-manual 13.0 0.94 0.76 0.87 0.76
PTF-estimates
BC-1 28.7 0.03 0.20 0.50 0.67 31.6 (13.1) 207 �0.17 0.15 0.48 0.67
BC-2 33.8 �0.32 0.15 0.46 0.67 35.0 (9.4) 209 �0.41 0.15 0.45 0.67
BC-3 24.7 0.30 0.74 0.54 0.74 25.7 (5.5) 189 0.24 0.70 0.53 0.73
BC-4 31.5 �0.16 0.15 0.48 0.67 32.4 (6.5) 204 �0.22 0.15 0.47 0.67
BC-5 13.5 0.93 0.77 0.85 0.77 15.1 (5.5) 155 0.86 0.78 0.79 0.77
BC-6 5.98 0.80 0.70 0.80 0.74 8.87 (8.58) 164 0.97 0.75 0.92 0.75
BC-7 6.24 0.82 0.71 0.81 0.74 6.16 (0.54) 135 0.82 0.71 0.81 0.74
VG-1 2.17 0.08 0.56 0.65 0.72 3.09 (1.50) 157 0.33 0.61 0.69 0.73
VG-2 4.11 0.54 0.65 0.73 0.74 4.30 (0.94) 152 0.58 0.66 0.74 0.74
VG-3 3.35 0.38 0.62 0.70 0.74 1.20 (0.73) 163 �0.28 0.48 0.61 0.70
VG-4 6.30 0.83 0.71 0.82 0.74 7.25 (3.26) 138 0.90 0.72 0.85 0.75
VG-5 7.39 0.91 0.73 0.86 0.75 7.97 (2.45) 126 0.94 0.74 0.88 0.75
VG-6 7.94 0.94 0.74 0.88 0.75 8.82 (5.01) 142 0.97 0.75 0.91 0.75
VG-7 3.20 0.35 0.61 0.69 0.73 3.39 (0.96) 158 0.40 0.62 0.70 0.74

G1, G2 and rG are the average and standard deviation of G estimates computed for each PTF, based on soil properties measured in 21 locations; BC = the Brooks and Corey
model, VG = the van Genuchten model, NSE is the Nash–Sutcliffe index, MIA is the modified index of agreement, Runoff = results of runoff modeling, FC = results of fecal
coliform modeling. Highlighted numbers indicate acceptable model performance.
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The number of predictors affected accuracy of the PTFs. Values
of AICc, computed using Eq. (14) (Table 3) and the PTF ranks based
on the AICc values (Table 4), showed that the most accurate esti-
mates of parameter G were obtained with the 5-parameter PTFs
that used organic carbon content as a predictor. Soil bulk density
appeared to be another important predictor. The total number of
PTFs used in this study is not sufficient to confirm this observation
statistically, however, two PTFs (BC-5 and VG-3) that utilized
organic carbon content but did not include bulk density, had rela-
tively low AICc ranks.

We are not aware of any study of the influence of soil properties
on the net capillary drive, however, several have reported the
importance of bulk density for predicting saturated hydraulic con-
ductivity (Ksat). For example, Rawls et al. (1992) indicated that bulk
density had a major effect on Ksat and in later work subdivided Ksat

estimates for each soil texture class according to bulk density
groups (Rawls et al., 1998). Organic matter content and bulk den-
sity also appeared most frequently as partitioning variables at the
tertiary level of the regression tree developed for Ksat prediction by
Lilly et al. (2007). Both bulk density and organic matter content
were used as predictors of Ksat in the regression-based PTFs
(Vereecken et al., 1990; Wösten et al., 1999) and in the artificial
neural networks (Tamari et al., 1996). The effect of input variables
on the accuracy of the VG-based PTFs predicting Ksat was examined
in the BØrgesen et al. (2008) study. These authors showed that the
RMSE and AIC values decreased with the addition of bulk density
and organic carbon content as predictors for Ksat in the PTFs devel-
oped for the USDA’s soil texture classification. Results of our study



Fig. 1. Relationships between values of hb (a) and k (b) parameters obtained in fitting the Brooks–Corey (BC) model to pairs (h, h), estimated with the PTF-16 and by
converting the van Genuchten (VG) model-fitted parameters to the same data.

Table 4
Rank of PTFs based on accuracy and certainty in estimating the net capillary drive G.

PTF K OC Averaging 1 Averaging 2 rG AICc

BC-1 3 12 12 14 13
BC-2 3 14 14 13 14
BC-3 3 11 11 10 11
BC-4 3 13 13 11 12
BC-5 3 + 3 6 9 8
BC-6 4 6 1 12 9
BC-7 5 + 5 5 1 2
VG-1 4 10 9 5 7
VG-2 5 + 7 7 3 5
VG-3 3 + 8 10 2 10
VG-4 5 + 4 4 7 3
VG-5 5 + 2 3 6 1
VG-6 4 + 1 2 8 4
VG-7 5 + 9 8 4 6

K is number of parameters; OC indicates presence of organic carbon in the list of PTF
inputs, averaging 1–2 – PTF ranking by the results soil property averaging 1 and
averaging 2 procedures; AICc – PTF ranking by the value of the Akaike criterion.

Table 5
Net capillary drive, G3, estimates and model performance statistics of the KINEROS2/
STWIR simulations conducted with ensemble-average G estimates.

Sampling location G3ðrGÞ (cm) Nm NSE MIA

Runoff FC Runoff FC

1 12.0 (10.9) 28 0.97 0.77 0.91 0.76
2 7.8 (7.1) 11 0.93 0.73 0.87 0.75
3 11.0 (10.3) 108 0.99 0.76 0.95 0.76
4 12.8 (11.8) 18 0.95 0.77 0.88 0.77
5 10.0 (9.3) 1.5 � 106 0.99 0.76 0.96 0.76
6 20.1 (19.0) 4 0.59 0.78 0.60 0.77
7 14.0 (13.1) 11 0.91 0.78 0.83 0.77
8 10.2 (8.6) 1.1 � 103 0.99 0.76 0.96 0.76
9 12.9 (11.7) 16 0.95 0.77 0.87 0.77

10 12.1 (11.0) 26 0.97 0.77 0.91 0.76
11 12.2 (11.8) 27 0.97 0.77 0.90 0.76
12 18.3 (17.0) 5 0.70 0.78 0.66 0.78
13 14.0 (13.0) 11 0.91 0.78 0.83 0.77
14 13.7 (13.7) 14 0.92 0.77 0.85 0.77
15 17.8 (15.9) 5 0.72 0.78 0.68 0.78
16 11.4 (9.8) 44 0.98 0.77 0.93 0.76
17 13.3 (12.3) 14 0.93 0.77 0.86 0.77
18 19.3 (18.3) 5 0.64 0.78 0.63 0.77
19 12.3 (11.0) 23 0.96 0.77 0.90 0.76
20 11.7 (10.6) 36 0.98 0.77 0.92 0.76
21 19.4 (19.0) 5 0.63 0.78 0.62 0.77

G3 and rG are the average and standard deviation of G estimates for each location,
using individual soil properties. NSE and MIA are the Nash–Sutcliffe index and the
modified index of agreement, respectively. Nm is the ratio between mean square
errors of G values estimated using individual PTFs and mean square error of
ensemble-average estimate. The highlighted numbers indicate acceptable model
performance.
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indicate that bulk density and organic carbon content can affect
both saturated hydraulic conductivity and soil net capillary drive
parameters.

Accuracy and uncertainty of the PTF-estimated G values associ-
ated with spatial variability of soil properties and with the PTF
equations were approximately the same for the two averaging
methods. The Kruskal–Wallis One Way Analysis of Variance did
not reveal statistically significant differences between the parame-
ter G values estimated by these two methods. Estimated G values
ranged from 2.2 cm to 33.8 cm and 1.2 cm to 35.0 cm, with aver-
ages of 12.8 cm and 13.6 cm for averaging 1 and averaging 2 meth-
ods, respectively (Table 3). This result was surprising, because the
parameter G is nonlinearly related to parameters of the BC and VG
equations, which are, in turn, nonlinear functions of basic soil
properties. Moreover, spatial variability of soil properties led to
high variability of the estimated G values, as assessed by rG (Table
3), yet the G estimates obtained with the two averaging methods
were very similar to each other.

Overall, the ensemble-averaging yielded more accurate esti-
mates of parameter G, compared to averaging 1 and averaging 2
approaches. The ensemble-average estimates ranged from 7.8 cm
to 20.1 cm at the 21 studied locations with an average of 13.6 cm
(Table 5). The averaged G estimate obtained with the ensemble
method was very close to the KINEROS2-estimate, probably
because most studied soil samples belonged to the same texture
class. Interestingly, variability of the G values generated via
the ensemble approach was relatively low compared to averaging
the PTF estimates, despite an overall greater variability of G values
associated with using different PTFs. The rG values characterizing
spatial variability of the soil properties ranged from 0.5 cm to
13.1 cm for 14 PTFs (Table 3), while individual PTFs produced rG

values from 7.1 cm to 19.0 cm (Table 5). This indicates that uncer-
tainty associated with the PTF selection dominates the uncertainty
associated with the spatial variability of soil properties in this
study. Consistent with this observation is that high uncertainty
in the estimates obtained using the same set of PTFs has been
reported. Guber et al. (2006) estimated soil water retention for five
depths within an 8-m trench, based on depth-averaged basic soil
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properties, and showed that greater uncertainty in water content
estimates was associated with the PTF equations than with the
measured soil properties used in the PTFs.

The superior performance of an ensemble prediction over a sin-
gle estimate observed in this study corroborates the studies of
Perrone and Cooper (1993), Breiman (1996), Wagner et al. (2001),
and Baker and Ellison (2008). Perrone and Cooper (1993) were
probably the first to demonstrate theoretically that the ensemble
approach can reduce the mean square error of the multimodel
prediction by a factor of total number of models used (Nm).
Breiman (1996) proposed and implemented a bootstrap aggregat-
ing (bagging) approach for classification trees and demonstrated
that the aggregation reduced misclassification rates by up to 77%.
The bagging approach has been shown to improve the predictive
ability of artificial neural networks for soil hydraulic properties
(Minasny et al., 2004). Wagner et al. (2001) examined the accuracy
of eight PTFs in estimating Ksat and found that the predictions were
most accurate when the results of two PTFs, which systematically
over- and under-estimated the measured Ksat values, were com-
bined in one prediction. Baker and Ellison (2008) showed that, for
the HYPRES database, an ensemble with two artificial neural net-
works s yielded more accurate estimates of water content at
�24.5 kPa, compared to a single artificial neural network. They con-
cluded that for the data investigated and the methods used, an
ensemble greatly improved results compared to the methods using
single models, even for a small number of ensemble members.

Following Perrone and Cooper (1993), we estimated the reduc-
tion factor Nm that is the ratio of mean square error of G values esti-
mated using the individual PTFs to the mean square error of the
ensemble-average estimate. The factor indicates the value of error
that can be reduced by replacing the results of individual PTF pre-
dictions with the PTF ensemble-average values. The Nm factor com-
puted for the 21 sampling locations used in the 14 PTFs varied over
six orders of magnitude with mean Nm = 28 that was twice the total
number of the pedotransfer functions used in the individual and
ensemble predictions. The extremely large Nm values occurred in
the sampling locations 5 and 8 where the differences between cal-
ibrated and ensemble-estimated values of the parameter G were
the smallest (Table 5). Overall high performance of the ensem-
ble-averaging was obviously the result of the systematic over-
and under-estimation of the calibrated G values by different PTFs.
3.4. Accuracy and uncertainty in predicting cumulative runoff

The sources of data used to estimate net capillary drive also
influenced the accuracy and uncertainty of cumulative runoff sim-
ulated with KINEROS2. As expected, the most accurate runoff pre-
dictions were achieved with calibrated values of the parameter G.
Overall good results were obtained with KINEROS2-recommended
parameters (Fig. 2a). These two simulations produced high values
of both the efficiency index (NSE) and the modified index of agree-
ment (MIA) (Table 3), indicating a good overall model perfor-
mance. Since the PTF approaches produced highly variable
estimates of the parameter G, they also led to higher uncertainty
in the cumulative runoff (Fig. 2b–d). Values of NSE and MIA varied
between �1.9 and 0.99 and between 0.37 and 0.96, respectively,
and decreased as the value of G departed from the calibrated one
(Fig. 3). Based on the NSE index, the runoff prediction was accept-
able when the parameter G ranged from 2.2 cm to 28.7 cm, while,
based on the MIA index, it was acceptable when G ranged from
4.7 cm to 15.8 cm. Despite high variability in the soil properties,
the KINEROS2 performance was better with G values estimated
from the PTFs compared to the KINEROS-recommended value in
several instances. Specifically, both performance indices were
higher for the G values obtained usingVG-6 PTF (averaging 1) and
for BC-6, VG-5 and VG-6 PTFs (averaging 2), compared to the indi-
ces obtained using the KINEROS-recommended G value.

The MIA index appeared to be more sensitive to the PTF source
of G values in the KINEROS2 simulations than the NSE index. Only
six of the 14 PTFs adequately represented the measured runoff
hydrograph, according to the MIA values, while 12 PTFs produced
positive NSE values and could be accepted in the simulations with
spatially-averaged soil properties (averaging 1). Based on the MIA
index, accurate runoff predictions were achieved with the PTFs
that used both organic carbon and bulk density as the parameter
G predictors.

The accuracy and uncertainty of the KINEROS2 results was also
affected by the method of G estimation. Ensemble-averaging
appeared to be more accurate and robust compared to the individ-
ual PTF estimating. The NSE values computed for runoff simula-
tions with the ensemble-average parameters were positive for all
locations and the MIA values were greater than 0.75 for 17 of 21
locations (Table 4), indicating 100% and 81% probability of accept-
able model performance, respectively. Probabilities of acceptable
model performance with the individual PTF-estimated parameters
were 86% and 71%, based on the NSE index, and 43% and 43%, based
on the MIA index, for averaging 1 and averaging 2 methods, respec-
tively. The accuracy of the runoff simulation with the ensemble-
averaged G values did not differ from that of the calibrated model
in 10% of the studied cases and was better than the accuracy of the
runoff simulation with the KINEROS2-recommended parameter in
52% of the cases. This was due to the ensemble-averaged G values
being more similar to the calibrated G values. Those obtained from
the KINEROS2-recommended and the PTF estimates deviated more
substantially from the calibrated G values.

To the best of our knowledge, efficiency of the individual PTF
and the ensemble-average parameter estimating approaches for
runoff prediction has not been studied yet. A similar approach to
the averaging 1 method used here was implemented by Guber
et al. (2006). They utilized the PTFs that we used in the present
study to estimate water retention parameters and to predict water
content dynamics in an 8-m long trench using HYDRUS-1D soft-
ware. They found that the averaging 1 method yielded more cer-
tain and accurate predictions of soil water contents than the
simulations with laboratory-measured soil hydraulic properties.
The authors attributed this to better representation of field water
retention with multiple PTFs, compared to laboratory measure-
ments. Our study corroborates that earlier finding. One possible
reason for a generally better performance of the ensemble
approach was using a large number of different PTFs. These PTFs
were developed for different soils, based on different datasets,
using different regression equations and soil properties as the pre-
dictors. As a result, many individual PTFs systematically overesti-
mated or underestimated the calibrated G value. This produced
wide tolerance intervals for the cumulative runoff simulated with
highly variable parameters (Fig. 2b and c). However, the averaging
results of all PTF estimates in the ensemble approach produced
more robust and accurate estimates of the parameter G and, conse-
quently, more adequate and certain runoff predictions. We believe
that while the specific numeric results will differ for different sets
of PTFs, the ensemble approach will perform better overall than
other methods, with performance improving as the number of
the PTFs used increases. Although this topic is beyond the scope
of the present research, it opens an interesting avenue for further
studies.

3.5. Accuracy and uncertainty in predicting FC concentrations and
total FC amounts transported by runoff

Drastic differences in runoff simulation results did not manifest
themselves in the FC concentrations computed with the STWIR



Fig. 2. Results of the KINEROS2 simulations with calibrated and KINEROS2-recommended values of parameter G (a), with PTF-estimated G1-values (b), with PTF-estimated
G2-values (c), and with ensemble-averaged G3-values (d).

Fig. 3. Values of the Nash–Sutcliffe efficiency index (NSE) and the modified index of
agreement (MIA) of cumulative runoff and FC concentrations in runoff water
obtained in KINEROS2/STWIR simulations with G-values estimated from measured
soil properties using 14 PTFs.
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model. The accuracy of the FC concentration predictions was sim-
ilar for both calibrated and KINEROS2-recommended parameter
values (Table 3, Fig. 4a). The 90% tolerance intervals, computed
as simulated values corresponding to 5% and 95% probability per-
centiles, were substantially smaller for the FC concentrations
(Fig. 4b–d) than for the cumulative runoff (Fig. 2b–d) in the indi-
vidual PTF and ensemble approaches. According to the NSE index,
the FC predictions were accurate in all simulations, while the MIA
values indicated that 43% and 100% of the FC predictions were
accurate in the individual PTF and ensemble approaches, respec-
tively (Tables 3 and 5).

In our study, a good overall performance of the STWIR model in
predicting the FC concentrations stemmed from lower sensitivity of
bacteria concentrations simulated using Eqs. ()5–7 to the parame-
ter G, compared to the sensitivity of runoff hydrograph computed
using Eqs. ()1–4 in the KINEROS2 model. The NSE values for FC were
positive when G values were 0.5 cm to 55.0 cm and MIA values
were greater than 0.75 when G values were 7.2 cm to 24.2 cm
(Fig. 3). Note that the estimated G values ranged from 2.2 to
33.8 cm, 1.2 to 35.0 cm, and 7.8 to 20.1 cm for averaging 1, averag-
ing 2, and the ensemble-averaging methods, respectively. Interest-
ingly, both NSE and MIA indices computed for the FC concentrations
did not change when G values were 28.7 cm to 54.6 cm, and monot-
onously decreased for the simulated runoff (Fig. 3). This can be
explained by sampling frequency and different influences of the
parameter G on the runoff and the FC concentration. It follows from
Eq. (4) that infiltration rate I increases nonlinearly with increasing G
value. The increase in I leads to a proportional decrease in runoff
rate and, more importantly, to a decrease in runoff duration
(Fig. 5a). The runoff rates were not high enough to noticeably affect
the FC concentration in our study, but the decrease in the runoff



Fig. 4. FC concentrations in runoff obtained in the STWIR simulations with the calibrated and KINEROS2-recommended parameter G (a); with the PTF-averaged G1 (b) and
averaged G2 (c) parameters; and using the ensemble-average values of parameter G3 (d).

Fig. 5. Effect of the parameter G value on simulated runoff (a) and on FC
concentrations in runoff water (b).
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duration drastically changed the falling limb of the FC breakthrough
curve (Fig. 5b). The peak FC concentrations were approximately the
same for all G values, but time to the peak and to zero FC concentra-
tions decreased with the increasing G value. For G values between
30 cm and 50 cm, time to zero concentration in the falling limb of
the FC breakthrough curve fell within the time interval between
the last two measurements; therefore, zero concentrations did
not affect NSE and MIA within this G range (Fig. 2). Relationships
between MIA, NSE and G were monotonous since the runoff hydro-
graph was recorded at 1 min interval in our study. This demon-
strated the importance of FC sampling frequency, specifically the
tailing part of the bacteria breakthrough curve (BTC) to correctly
evaluate model performance with regard to model parameters.

Despite relatively low sensitivity of the STWIR model to the
parameter G, the estimation method influenced the model predic-
tive uncertainty. The 90% tolerance interval was considerably nar-
rower, especially in the tailing part of the BTCs simulated with the
ensemble-averages parameters, than those estimated individually
for each PTF (Fig. 4b–d). This indicates a better overall performance
of the former approach in estimating the net capillary drive param-
eter. The advantage of the ensemble-average prediction was more
obvious when the total FC amounts transported with runoff from
the KINEROS/STWIR simulations were compared. It yielded far
more robust predictions of the total FC, compared to the individual
PTF method. The last approach produced the total FC values that
varied almost one order of magnitude. Such high variability was
caused by overall uncertain predictions of the cumulative runoff
and, to a lesser extent, the FC concentrations.

The total number of the runoff-transported FC cells predicted
using different methods of the parameter G estimation appeared
to be very close to the calibrated model when the mean simulated
values were compared (Fig. 6). The relative deviations from the



Fig. 6. Total FC transported with runoff obtained in KINEROS2/STWIR simulations
with different sources of the parameter G. Close symbols show max and min values,
while open symbols show single predicted values.

654 A.K. Guber et al. / Journal of Hydrology 519 (2014) 644–655
calibrated prediction were 16%, 23%, 11%, and 15% for the KINER-
OS2-recommended, averaging 1, averaging 2, and the ensemble-
averaged parameters, respectively. This manifested an overall
validity of the different averaging approaches for parameter esti-
mation when spatially-variable soil properties and parameters
must be represented by a single ‘‘effective’’ parameter value in
overland contaminant transport models. The approaches can be
particularly useful when soil properties vary beyond one soil tex-
ture class and the use of the KINEROS2 estimates becomes nontriv-
ial. All averaging approaches implemented in this study utilize
continuous PTFs and additional data such as bulk density, organic
carbon content and sampling depth. The additional predictors
make parameter estimates within one texture class more accurate.

4. Conclusions

We examined the effect of different approaches for estimating
the net capillary drive parameter in the Parlange infiltration equa-
tion (Parlange et al., 1982) on the KINEROS2/STWIR predictions of
runoff, FC concentration, and total FC transported with runoff.
Three parameter estimation methods were compared: (i) fit to
the measured cumulative runoff hydrograph (calibration); (ii) esti-
mating based on soil texture class; and (iii) PTF-based estimating
from basic soil properties. Overall model accuracy and uncertainty
were found to be affected by the accuracy and uncertainty of the
parameter G estimation. The most accurate prediction was obtained
when the parameter estimates were obtained from model
calibration by fitting to the cumulative runoff observations. The
KINEROS2-recommended parameter estimation, based on soil tex-
ture class, yielded a slightly less accurate prediction of runoff, FC
concentrations and total FC.

The spatially-variable soil properties used for the parameter
estimation produced highly variable estimates. In general, variabil-
ity was larger for the individual PTFs than the ensemble-averaging
approach. That was explained by higher parameter uncertainty
associated with the PTF models than with the spatial variability
of soil properties in this study. The smaller uncertainty in G estima-
tions produced by the ensemble method translated into more
certain KINEROS2/STWIR predictions of cumulative runoff and
total FC in runoff water, however, model uncertainty was output-
specific. Uncertainty in predicting FC concentration was much
smaller than runoff and total FC predictions, which implies that
PTF can provide robust prediction results when FC concentration
in runoff water is a concern.

The accuracy of averaged predictions of FC concentration and
total FC transported with runoff were approximately the same
for all three approaches to estimating the parameter G. This stems
from systematic over- and under-estimations of parameter G val-
ues by selected PTFs and is consistent with earlier findings for
the ensemble prediction. Results of this study also showed the
importance of sampling frequency, specifically in the tailing part
of the bacteria breakthrough curve to correctly evaluate model
performance with regard to model parameters.

Our study is the first to demonstrate the applicability of param-
eter ensemble and averaging for the net capillary drive parameter
G that is then used in a model to simulate runoff and bacteria over-
land transport. The overall outcome shows the applicability of indi-
vidual PTF-based and ensemble-averaging approach for infiltration
parameter estimation when a single ‘‘effective value’’ is used as an
input in the KINEROS2/STWIR model. We do not intend to general-
ize beyond the model used in the present study, however, applica-
tions to other models will be an interesting avenue for future
research.
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