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Abstract.   In the southwest United States, the current prolonged warm drought is similar to the predict-
ed future climate change scenarios for the region. This study aimed to determine patterns in vegetation 
response to the early 21st century drought across multiple biomes. We hypothesized that different biomes 
(forests, shrublands, and grasslands) would have different relative sensitivities to both climate drivers 
(precipitation and temperature) and legacy effects (previous-year’s productivity). We tested this hypothe-
sis at eight Ameriflux sites in various Southwest biomes using NASA Moderate-resolution Imaging Spec-
troradiometer Enhanced Vegetation Index (EVI) from 2001 to 2013. All sites experienced prolonged dry 
conditions during the study period. The impact of combined precipitation and temperature on South-
west ecosystems at both annual and sub-annual timescales was tested using Standardized Precipitation 
Evapotranspiration Index (SPEI). All biomes studied had critical sub-annual climate periods during which 
precipitation and temperature influenced production. In forests, annual peak greenness (EVImax) was best 
predicted by 9-month SPEI calculated in July (i.e., January–July). In shrublands and grasslands, EVImax 
was best predicted by SPEI in July through September, with little effect of the previous year’s EVImax. Daily 
gross ecosystem production (GEP) derived from flux tower data yielded further insights into the complex 
interplay between precipitation and temperature. In forests, GEP was driven by cool-season precipita-
tion and constrained by warm-season maximum temperature. GEP in both shrublands and grasslands 
was driven by summer precipitation and constrained by high daily summer maximum temperatures. In 
grasslands, there was a negative relationship between temperature and GEP in July, but no relationship 
in August and September. Consideration of sub-annual climate conditions and the inclusion of the effect 
of temperature on the water balance allowed us to generalize the functional responses of vegetation to 
predicted future climate conditions. We conclude that across biomes, drought conditions during critical 
sub-annual climate periods could have a strong negative impact on vegetation production in the south-
western United States.
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Introduction

Global climate change is expected to result in 
altered hydroclimatic conditions which can, in 
turn, disrupt key ecosystem processes (IPCC 
2013), including aboveground net primary pro-
duction (ANPP) (Zhao and Running 2010). In the 
southwestern United States (Southwest), warm 
droughts are projected to increase in frequency 
and duration (Seager et al. 2007, Cayan et al. 2010, 
Seager and Vecchi 2010). Already, the early 21st 
century has brought prolonged drought, warm 
temperatures, and extreme rainfall events to the 
Southwest (Easterling et  al. 2000, MacDonald 
2010). Yet, ecosystem responses to climate vari-
ability are not fully understood, and thus the re-
sponse of ANPP to projected climatic conditions is 
highly uncertain. Understanding plant functional 
responses to climate variability is necessary to im-
prove our ability to predict vegetation response 
to global climate change. Such predictions are es-
sential for assessment of climate change impacts 
on ecosystem services, land and water resources, 
and the carbon and water cycles (Backlund et al. 
2008).

Regional patterns in vegetation response to 
climate drivers are ecologically complex and dif-
ficult to discern. Distinguishing between natural 
interannual variability and directional change in 
vegetation productivity requires a multiyear data 
record (i.e., 10  yr or more) (Moran et  al. 2008). 
Such long-term studies, often conducted at a  
single experimental site, can determine the 
within-site relationship of productivity to cli-
matic variability across time (e.g., Lauenroth 
and Sala 1992) and discern production legacies 
during drought (Peters et al. 2012).

Interannual variation in vegetation produc-
tivity within-sites is thought to be broadly ex-
plained by both life history and biogeochemical 
interactions (Huxman et  al. 2004). However, a 
global analysis of the impact of drought on satel-
lite, dendrochronological and in situ estimates of 
vegetation productivity indicates that empirical 
drought response mechanisms underlying these 
dynamics vary between ecosystem types (Vicente-
Serrano et  al. 2013). Warm drought conditions 
caused widespread mortality in U.S. Southwest 
forests (Breshears et al. 2005, Allen et al. 2010), 
but caused shifts in the functional response 
of ANPP to precipitation in Southwest desert  

grasslands (Moran et al. 2014). The most import-
ant inter-annual climatic drivers between dif-
ferent ecosystem types are not resolved. Some 
cross-biome studies conclude that inter-annual 
variability in vegetation productivity is insen-
sitive to variation in precipitation (Knapp and 
Smith 2001, Hsu et al. 2012), whereas others report 
strong relationships between productivity and 
precipitation variation across biomes (Fang et al. 
2001, Ma et al. 2013).

The interpretation of inter-annual effects of 
drought may be further complicated by within-
year or intra-annual variation in precipitation 
and temperature. In grasslands, the timing of in-
terannual variation in climate drivers affects eco-
logical processes (Craine et al. 2009, 2012, Craine 
2013). Grassland productivity showed differen-
tial sensitivity to precipitation and temperature 
at distinct time periods during the growing sea-
son (Craine et al. 2012, Craine 2013). Such stud-
ies underscore the need to consider not only 
the magnitude, but also the sub-annual timing 
of precipitation and temperature. Although the 
existence of these “critical climate periods” have 
been identified in grasslands, further exploration 
of the effects of sub-annual climate conditions in 
shrubland and forest biomes is necessary.

Many studies have considered the functional re-
lationships between climatic drivers and produc-
tivity (e.g., Vicente-Serrano et al. 2013, Zhang et al. 
2015). To investigate plant functional responses 
across a range of ecosystem types in the South-
west, we attempt to identify mechanisms driving 
variability in these responses. We focused here 
on those mechanisms that underlie vegetation 
response to climate variability, recognizing that 
plant physiology and biogeochemical interactions 
further underlie these relationships. Using a com-
bination of decade-long observations to address in-
terannual variability and fine-temporal-resolution 
in situ data to identify mechanisms across multiple 
ecosystem types, it is possible to generalize vege-
tation response to climate variability. For example, 
Ma et al. (2013) coupled ground measurements of 
photosynthesis with 13 yr of satellite observations 
of vegetation greenness to characterize spatial and 
temporal variability in savanna phenology across 
an ecological rainfall gradient in Australia. Here, 
we investigate inter- and intra-annual changes in 
gross ecosystem productivity and ecosystem phe-
nology as ecological mechanisms contributing to 
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previously observed patterns in responses of abo-
veground net productivity (Ponce-Campos et al. 
2013, Moran et al. 2014) and explore their environ-
mental controls empirically.

This study assessed long-term dynamics in 
productivity at multiple sites across biomes, and 
then interpreted those dynamics based on mech-
anisms identified with high-temporal-resolution 
in situ measurements at each site. We used sat-
ellite observations of the Enhanced Vegetation 
Index (EVI) from the Moderate-resolution Imag-
ing Spectroradiometer (MODIS) to estimate peak 
greenness (EVImax) at eight eddy covariance flux 
tower sites from the Ameriflux network. Sites 
were chosen across the Southwest and represent-
ed several dominant biomes in arid and semi-
arid ecosystems: grasslands, shrublands, and  
forests. First, we developed biome-specific mod-
els of interannual EVImax in relation to annual 
and sub-annual climatic drivers including pre-
cipitation and temperature based on long-term 
(13-yr; 2001–2013) EVI measurements at each site. 
We derived four empirical models from recent in-
fluential studies of the relationship between veg-
etation production and climate drivers. We then 
determined the most parsimonious model that ex-
plained variation in EVImax for each biome. Then, 
we interpreted these results using daily estimates 
of gross ecosystem production (GEP) measured 
with the eddy covariance method. This coupled 

approach afforded us the unique ability to gen-
eralize responses of plant productivity to chang-
ing hydroclimatic conditions across Southwest 
ecosystem types. The study was framed in the 
context of the 21st century drought, a prolonged 
drought coupled with warm temperatures that is 
thought to be similar to predicted future condi-
tions in the Southwest (MacDonald 2010).

Materials, Methods, and Models

Study sites
This study focused on eight experimental sites 

from the Ameriflux national eddy covariance 
network (http://ameriflux.lbl.gov/). These study 
sites represent a variety of Southwest biomes, 
elevations, and varied precipitation and tem-
perature regimes (Table  1). Locations include 
three forest sites in New Mexico and Arizona, 
three shrubland sites in New Mexico and 
Arizona, and two grassland sites in New Mexico 
and Arizona (Fig.  1). The sites range in eleva-
tion from 1116  m at US-Srm to 3003  m at US-
Vcm, in mean annual precipitation (MAP) from 
242  mm at US-Seg to 659  mm at US-Fuf, and 
in mean annual temperature (MAT) from 5.4°C 
at US-Vcm to 18.4°C at US-Srm. Study sites 
include two sets of paired grassland-shrubland 
sites: US-Seg and US-Ses at the Sevilleta National 
Wildlife Refuge and LTER site, and US-Wkg 

Table 1. Characteristics, data availability, and locations of the eight Ameriflux sites used in this study.

Biome Site
IGBP  

classification
Fluxnet 

ID
Elevation 

(m)
MAT 
(°C)

MAP 
(mm)

Lat  
(°)

Long  
(°)

Flux data 
range

Forest Flagstaff Unmanaged 
Forest

Evergreen  
needleleaf forest

US-Fuf 2180 7.8 659 35.09 −111.76 2006–2010

Valles Caldera Mixed 
Conifer

Evergreen  
needleleaf forest

US-Vcm 3003 5.4 605 35.89 −106.53 Not used

Valles Caldera 
Ponderosa Pine

Evergreen  
needleleaf forest

US-Vcp 2542 5.8 585 35.86 −106.6 Not used

Shrubland Santa Rita Mesquite 
Savanna

Woody savanna US-Srm 1116 18.4 425 31.82 −110.87 2004–2013

Lucky Hills Shrubland Open shrubland US-Whs 1372 16.8 360 31.74 −110.05 2007–2013
Sevilleta Desert 

Shrubland
Open shrubland US-Ses 1593 13.6 243 34.34 −106.74 Not used

Grassland Kendall Grassland Grassland US-Wkg 1531 16 404 31.74 −109.94 2004–2013
Sevilleta Desert 

Grassland
Grassland US-Seg 1622 13.6 242 34.36 −106.7 Not used

Notes: International Geosphere-Biosphere Programme (IGBP) vegetation classification for each site is presented. All site data 
were compiled from publicly available information provided by Ameriflux principal investigators to the Ameriflux Site and 
Data Exploration System provided and maintained by Oak Ridge National Laboratory (ORNL) (http://ameriflux.ornl.gov/), 
except for mean annual temperature (MAT) and mean annual precipitation (MAP). MAT and MAP were derived from Daymet 
long-term daily climate data (1980–2013) extracted from the 1 × 1 km pixel closest to the flux tower. Daymet data were obtained 
through the ORNL Distributed Active Archive Center (DAAC).

http://ameriflux.lbl.gov/
http://ameriflux.ornl.gov/
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and US-Whs at the Walnut Gulch Experimental 
Watershed. The US-Vcm and US-Vcp are paired 
mixed-conifer/ponderosa woodland sites.

Climate data
Daily precipitation and temperature data for 

each site were obtained from the Daymet data 
set through the Oak Ridge National Laboratory 
Data Archive and Distribution Center (ORNL 
DAAC) (http://daymet.ornl.gov/). The Daymet 
data set provides estimates of daily meteoro-
logical parameters over North America on a 
1 × 1 km grid (Thornton et al. 1997). Estimates 
are derived from meteorological station data 
and interpolated and extrapolated to provide 
continuous estimates of precipitation and tem-
perature data across the conterminous United 
States (Thornton et al. 1997). Data are available 
for the last 34  yr, from 1980 through 2013. 
Daily precipitation, minimum temperature, and 
maximum temperature data were extracted for 
the 1 × 1 km pixel encompassing each Ameriflux 
site. Total annual precipitation (PT) was com-
puted as a sum of daily precipitation in the 
hydrologic year (01 October to 30 September).

SPEI
The Standardized Precipitation-Evapotranspira

tion Index (SPEI) uses potential evapotranspiration 
(PET) and precipitation to characterize the drought 

conditions in a given area across dynamic times-
cales. Because it accounts for the effect of increased 
temperatures on the water balance, the SPEI is 
considered to be a better predictor of changes 
in ecological response to drought than other 
drought indices, especially in the summer (Vicente-
Serrano et  al. 2012). Additionally, the SPEI is 
multiscalar, allowing calculations at a range of 
timescales ranging from 1 to 48  months to ex-
amine impacts of both short-term and long-term 
water deficits (Vicente-Serrano et  al. 2010). The 
SPEI requires a calibration period to determine 
the average water balance (precipitation minus 
PET) and then calculates deviations from the 
average water balance. Negative SPEI values rep-
resent drought conditions and positive SPEI values 
represent wet conditions.

The SPEI was included as a predictor at 1- to 
12-month timescales in this analysis. The SPEI 
was computed at the end of the growing season 
using three endpoints (September, August, and 
July). In all, 36 SPEI models (12 timescales  ×  3 
endpoints) were calculated for each biome.

The SPEI was computed from the Daymet data 
at 1 × 1 km resolution using a software package 
housed in the R language (R version 3.0.2) and 
environment for statistical computing (R Core 
Team 2013). Daily Daymet data were aggregated 
to monthly for the computation of PET and 
SPEI. The tools for calculating PET and SPEI are 

Fig. 1. Locations of the eight Ameriflux sites across the Southwest United States, overlain on an image of the 
mean Enhanced Vegetation Index (EVI, 2.25 × 2.25 km) over all years in the study period (2001–2013). US-Seg 
and US-Ses are Sevilleta Desert Shrubland and Desert Grassland, respectively. US-Fuf is Flagstaff Unmanaged 
Forest, US-Srm is Santa Rita Mesquite Savannah, US-Wkg is Kendall Grassland, US-Whs is Lucky Hills 
Shrubland. US-Vcp and US-Vcm are Valles Caldera Ponderosa Pine Forest and Mixed Conifer Forest, respectively, 
and US-Seg and US-Ses are Sevilleta Desert Shrubland and Desert Grassland, respectively.

http://daymet.ornl.gov/
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available in the package “SPEI” (Beguería and 
Vicente-Serrano 2013). We used the function 
“thornthwaite” to calculate PET according to the 
Thornthwaite equation (Thornthwaite 1948), and 
the function “spei” to calculate SPEI from PET and 
daily precipitation. Daytime average temperature 
was estimated from daily Tmax and Tmin from the 
equation for daylight weighted average air tem-
perature (Running et al. 1987). The calibration pe-
riod for SPEI was January 1980 to December 2013.

To put the 21st century drought in historic con-
text, SPEI was also obtained from the SPEI Glob-
al Drought Monitor (http://sac.csic.es/spei/map/
maps.html) at 0.5 degrees from January 1950 to 
December 2010. At this coarse resolution, the 
paired US-Seg and US-Ses sites and the US-Vcm 
and US-Vcp sites fell within the same SPEI tile. 
The calibration period for SPEI from the Global 
Drought Monitor was January 1950 to Decem-
ber 2010. Calculation of PET was based on the 
Thornthwaite equation (Thornthwaite 1948).

For the purposes of explanation, SPEI > 0.5 was 
considered a wet spell, 0.5 > SPEI ≥ −0.5 is nor-
mal, and SPEI < −0.5 was moderate drought, and 
SPEI < −1.3 was severe drought. These drought 
classifications were based on the Drought Sever-
ity Classification for the Standardized Precipi-
tation Index (SPI) used by on the U.S. Drought 
Monitor (http://droughtmonitor.unl.edu/Abou-
tUs/ClassificationScheme.aspx).

Remotely sensed EVI
We used satellite observations of the EVI from 

the MODIS to determine peak greenness. A widely 
used measure of greenness, EVI is defined as 

� (1)

where ρNIR, ρred, and ρblue are atmospherically 
corrected surface reflectances for the near-
infrared, red, and blue bands, L is the canopy 
background adjustment, C1 and C2 are the co-
efficients of the aerosol resistance term, and G 
is a gain factor (Huete et  al. 2002).

MODIS EVI data (MOD13Q1) were av-
eraged over an area of 9  ×  9 MODIS pixels 
(2.25 × 2.25 km) surrounding the eddy covariance 
flux tower at  each site for the full MODIS time 
series (2001–2013). There were 23 EVI scenes per 
year and 13 yr, totaling 299 EVI scenes for each 

site. Data were smoothed using TimeSat software 
(Jönsson and Eklundh 2004).

Although previous studies have used integrated 
annual EVI (iEVI) as a surrogate for annual ANPP 
(e.g., Ponce-Campos et al. 2013, Zhang et al. 2013, 
Moran et al. 2014), recent research suggests that 
evergreen forests have low spectral sensitivity to 
water stress (Sims et al. 2014). However, satellite 
observations of forest greenness during the peak 
of the growing season were correlated with forest 
drought stress (Williams et al. 2013). Here, we use 
the mean of the four consecutive maximum EVI 
observations in the growing season (EVImax) as an 
estimate of peak greenness (Fig. 2).

Flux data
Ameriflux sites use eddy covariance tech-

niques to continuously measure CO2 exchange 
between ecosystems and the atmosphere ag-
gregated to 30–60  min intervals. Additionally, 
climate variables are measured at each flux 
tower, including precipitation, temperature, and 
vapor pressure deficit (VPD). Daily gap-filled 
GEP estimates and climate variables were ob-
tained directly from site administrators. We 
used data from 4 flux sites with long-term 
(≥5  yr) data records: US-Fuf, US-Srm, US-Wkg, 
and US-Lhs (Table  1). There were 5  yr of GEP 
data available from US-Fuf, 10 yr from US-Srm, 
7  yr from US-Whs, and 10  yr from US-Wkg.

Gross ecosystem production was derived from 
the following equation: 

� (2)

where NEE is net ecosystem exchange of CO2, 
Reco is ecosystem respiration, and GEP is gross 
ecosystem production. NEE is calculated directly 
from measured carbon dioxide flux and then par-
titioned into GEP and Reco (for site-specific meth-
ods see Dore et al. 2008, Scott et al. 2010). Daily 
GEP estimates were used for interpretation, and 
specifically, to discern mechanisms underpin-
ning modeling results.

Relationships among vegetation productivity,  
GEP and EVImax

Although both GEP and EVImax reflect car-
bon uptake by plants, EVI is a greenness 
index and GEP measures total photosynthetic 
uptake per unit of time. Plants make frequent 

EVI=G
ρ

NIR
−ρ

red

ρ
NIR

+C
1
ρ

red
−C

2
ρ

blue
+L

GEP=Reco+NEE

http://sac.csic.es/spei/map/maps.html
http://sac.csic.es/spei/map/maps.html
http://droughtmonitor.unl.edu/AboutUs/ClassificationScheme.aspx
http://droughtmonitor.unl.edu/AboutUs/ClassificationScheme.aspx
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diurnal adjustments in response to daily or 
sub-daily fluctuations in environmental con-
ditions, such as opening and closing their 
stomata in response to VPD. Satellite EVI 
does not measure these fundamental plant 
mechanisms, but is instead sensitive to slowly 
changing, dramatic variations in greenness. 
Further, the 16-d temporal resolution of EVI 
is too coarse to incorporate daily or sub-daily 
plant mechanisms. Because the flux measure-
ments are in situ and at fine temporal scale, 
these diurnal adjustments are accounted for 
in the measured GEP. Consequently, we rec-
ognize in this study that GEP and EVImax 
are different yet complementary measures of 
vegetation productivity.

MODIS EVI is a 16-d composited product. To 
maximize temporal synchronization between 
daily GEP and 16-d EVI, we added 16  d to the 
end of the EVImax range for each year. Daily GEP 
values in the time period of EVImax + 16 d were 
then summed to calculate GEPmax.

The time series of EVI at the US-Fuf site showed 
little seasonal variation in greenness (Fig. 2a) and 
was thus not included in the annual models, but 
US-Fuf was still used for analyses involving GEP. 
The 2013 Thompson Ridge Fire in the Valles Cal-
dera National Preserve affected both the US-Vcp 
and US-Vcm sites, thus 2013 was not included in 
the annual models for either site.

Modeling
To determine the relative importance of cli-

mate drivers and legacies in different ecosystem 
types, four models were evaluated. To allow 
for meaningful comparisons across sites, climatic 
variables and EVI values were standardized in 
these models, where the standardized values 
were the deviation of the i-year value from 
the 13-yr average in units of standard deviation 
(σ). For a given variable X, 

� (3)

Because SPEI is already standardized to the mean 
of the calibration period for a given site, SPEI was 
not standardized by Eq. 3.

The first model was based on recent evidence 
suggesting that plant communities across di-
verse biomes share an intrinsic sensitivity to 
water availability (Ponce-Campos et al. 2013). 
In dry years, ecosystem water-use efficiency 
(WUEE; above-ground net primary production/
evapotranspiration) converged to a common 
maximum cross-biome WUEE (Ponce-Campos 
et al. 2013). During drought, ecosystems that 
are normally constrained by resources other 
than water (e.g., light, nutrients) can become 
water-limited (Jenerette et  al. 2012). Thus, we 
inferred that during the persistent 21st century 

X
S
=

X
i
−X

σ
X

Fig.  2. Sixteen-day ensemble averages of Moderate-resolution Imaging Spectroradiometer (MODIS) 
Enhanced Vegetation Index (EVI, 2.25 × 2.25 km) for all sites used in this study grouped by biome: (a) forests (b) 
shrublands and (c) grasslands. Data are averages (±1 standard error) across all years used in the study (2001–
2013). Ensemble averages for US-Vcm and US-Vcp are for 2001–2012 only due to the 2013 Thompson Ridge Fire 
in the Valles Caldera National Preserve.
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drought in the Southwest, plant communities 
across biomes would behave as if they were 
water-limited. Using EVImax as a measure of 
vegetation productivity, we expect that across  
biomes, EVImax  =  f(PT). Thus, using standard-
ized values for cross-site comparison, we  
proposed that 

� (4)

where b0 and b1 are empirically derived coeffi-
cients specific to this equation, PTS is standard-
ized total annual precipitation, and the subscript 
y represents the current year.

Sala et al. (2012) suggested that in grasslands, 
legacies of wet and dry years influenced annu-
al vegetation productivity. They proposed that 
current-year ANPP was based on both current-
year PT and ANPP in the previous year. Exper-
imental manipulations provided support for 
legacy effects in grasslands (Reichmann et  al. 
2013), and in a Chihuahuan Desert shrubland, 
legacy effects in underlying grasses were found 
after several consecutive wet years (Peters et al. 
2014). Using EVImax as a measure of vegeta-
tion productivity, we expect that in grasslands, 
EVI

max
(y)
= f (P

T(y), EVI
max

(y−1)

), where EVImax(y−1)
 is 

the previous-year’s EVImax. This led to the sec-
ond model for this study, where 

� (5)

where b0, b1, and b2 are empirically derived coef-
ficients specific to this equation, PTS is standard-
ized total annual precipitation, and the subscript 
y represents the current year.

Southwest forest growth depends on snow-
melt from winter precipitation (Kerhoulas et al. 
2013), which replenishes soil water in the spring. 
In the spring and summer, high evaporative 
demand associated with warm temperatures 
causes stomatal closure in trees, which if pro-
longed, can lead to carbon starvation and mor-
tality (Adams et al. 2009). Williams et al. (2013) 
determined an index of forest drought stress 
(FDSI) that was based on warm-season VPD and 
cool-season (November through March) precip-
itation. Warm-season VPD was defined as the 
average of VPD from August–October of the 
previous year and May–July of the current year. 

An equivalent relation specific to this study was 
derived by using EVImax as a proxy for forest 
production and maximum temperature (Tmax) 
in place of VPD. VPD is largely determined by 
temperature in the Southwest (Weiss et al. 2009), 
and Tmax was found to predict nearly the same 
variation in the FDSI as VPD (Williams et al. 
2013). Adapting this equation, we expected that 
in forests, EVImax = f(Pcool , Tmaxwarm

), where Pcool 
is the average of precipitation from November 
through December of the previous year and 
January through March of the current year, and 
Tmaxwarm

 is the mean daily maximum temperature 
from August–October of the previous year and 
May–July of the current year. The third model 
used in this study was 

� (6)

where b0, b1, and b2 are empirically derived coef-
ficients specific to this equation.

The effect of temperature on production 
in the Southwest is not fully understood. In-
creased temperatures combined with reduced 
precipitation exacerbate the effects of drought 
in the Southwest (Breshears et  al. 2013), and if 
prolonged, can cause mortality events and al-
ter ecosystem function (Breshears et al. 2005). 
Plants do not experience precipitation and tem-
perature separately, so it is reasonable to expect 
that the combined effect of these climate drivers 
will affect vegetation production. Additionally, 
seasonal temperature and precipitation are like-
ly to influence vegetation production in addition 
to annual precipitation. For example, Southwest 
forests are dependent on winter precipitation, 
but many Southwest grasslands and shrublands 
are dependent on the heavy rains brought by the 
North American Monsoon in late summer. We 
expect that SPEI will predict interannual varia-
tion in EVImax for two reasons: first, because it 
accounts for the combined effect of temperature 
and precipitation on production, and second, 
because it allows us to pinpoint the dominant 
timescale that influences vegetation production 
for each biome. We expect that across biomes, 
EVImax  =  f(SPEInm), where SPEI is calculated 
in month m at a n-month timescale and n is the 
dominant timescale (in months) that influences 
vegetation production. The dominant timescale 
(n) was determined as the SPEI timescale that 

EVImaxS(y) =b0+b1PTS(y)

EVImaxS(y) =b0+b1PTS(y) +b2EVImaxS(y−1)

EVImaxS(y) =b0+b1Pcool S+b2TmaxwarmS



May 2016 v Volume 7(5) v Article e013398 v www.esajournals.org

BARNES ET AL.

was most highly correlated with EVIsmax(y)
 for 

each biome. The fourth model is a simple linear 
relation, where 

� (7)

where b0 and b1 are empirically derived coeffi-
cients specific to this equation.

Statistics
Sites were grouped by biome as described 

in Table  1. We fit all models (Eqs.  4–7) for the 
two combined forest sites, three combined shru-
bland sites, and two combined grassland sites. 
The best model was selected based on Akaike’s 
Information Criterion adjusted for small sample 
sizes (AICc) and the coefficient of determination 
(r2) (Burnham and Anderson 2002). An addi-
tional parameter was only included in the model 
if its addition reduced the AICc by 2 or more 
(Burnham and Anderson 2002). The SPEI, be-
cause it is calculated from PET and precipitation, 
was considered to have two parameters for AIC 
analysis. If two models had the same number 
of parameters, the model with the lowest AICc 
was selected.

Statistical analyses were performed in R ver-
sion 3.0.2 (R Core Team 2013). Regression anal-
yses were performed using the base linear  
modeling functions (R Core Team 2013), and 
break point analyses were performed using 
the “segmented” package (Mueggo 2008). AICc 
values were calculated using the “AICcmodavg” 
package in R (Mazerolle 2013).

Results

Early 21st century drought
To determine if the study sites experienced 

altered hydroclimatic conditions associated with 
the 21st century drought, we compared historic 
SPEI (1950–1999) to early 21st century SPEI 
values (2000–2013). Based on the annual SPEI 
values provided by the Global Drought Monitor, 
all sites experienced drought during the study 
period (2001–2013) (Fig. 3). All sites experienced 
at least 2  yr of extreme drought, and US-Srm 
had extreme or moderate drought for 10  yr of 
the 13-yr study period. Annual SPEI during 
the early 21st century (2000–2013) was signifi-
cantly lower than SPEI from 1950 to 1999 

(P  <  0.05) at all sites except for US-Seg and 
US-Ses in New Mexico, where there was no 
significant difference between the two time 
periods (Table  2). Here, SPEI calculated from 
the Global Drought Monitor was used to pro-
vide historic context to our study. In all sub-
sequent mentions of SPEI, values were calculated 
from 1-km Daymet data.

Using SPEI calculated from Daymet data at 
1-km resolution from 1980 to 2013, we con-
firmed that all study sites experienced prolonged 
drought and increased temperatures associated 
with altered hydroclimatic conditions in the ear-
ly 21st century (Table  3). All sites experienced 
prolonged dry conditions (SPEI < 0) in the early 
21st century ranging from 5 to 8 yr, whereas dry 
conditions in the late 20th century lasted only 
1–3 yr. The difference between average tempera-
ture from 1980 to 1999 and from 2000 to 2013 
(ΔT) was positive (i.e., increased temperatures 
during the early 21st century) in both the warm 
season (April–September) and the cool season 
(October–March). The magnitude of ΔT was 
larger in the warm season than in the cool sea-
son; warm-season temperature during the 21st 
century increased by 1.25°, 0.74°, and 0.66°C in 
forests, shrublands, and grasslands, respectively 
(Table 3).

Dynamic timescale of SPEI
Rather than report model results for all SPEI 

timescales calculated at July, August, and 
September (48 models), we report only the 
dominant SPEI timescale for each biome de-
fined by the highest correlation with EVIsmax. 
The dynamic timescale of SPEI, however, pro-
vides important information about the domi-
nant timescales at which drought has the 
strongest influence on vegetation production 
(Fig.  4). In forests, the correlation between 
SPEI and EVIsmax was highest for SPEI9Sep, 
the 9-month SPEI calculated in September (i.e., 
January–September) (Fig.  4a). The correlation 
for shrubland was highest for SPEI2Aug, the 
2-month SPEI calculated in August (i.e., July–
August) (Fig.  4b), and for grassland, the cor-
relation was highest for SPEI3Sep, the 3-month 
SPEI calculated in September (July–September) 
(Fig.  4c).

The definition of timescales at which drought 
has the strongest influence on vegetation 

EVImaxS(y)
=b0+b1SPEInm
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production inspired a revisit of the drought 
conditions at our sites during the early 21st 
century (Table 4). The number of drought years 
(SPEI < −0.5) at the dominant timescale for each 

site was compared to the number of drought 
years at the annual timescale. The SPEI in the 
early 21st century (2000–2013) at the domi-
nant timescale for forest sites (SPEI9Sep) indi-

Fig. 3. Annual SPEI from 1950 to 2013 for all sites. Lines shaded with red above and blue underneath 
are 0.5° SPEI from 1950 to 2013 obtained from the SPEI Global Drought Monitor. Bars are SPEI from 1980 
to 2013 calculated from 1 km Daymet data for each site. Twelve-month SPEI was computed at the end of 
the hydrologic year in September. Red indicates that SPEI is less than zero (dry) and blue indicates that 
SPEI is greater than zero (wet). Dashed lines represent wet spells (SPEI  >  1.3) and extreme drought 
conditions (SPEI < −1.3). The gray shaded region of the graph indicates the time period examined in this 
study (2001–2013).
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cated that there were more drought years than 
defined by annual SPEI at all three forest sites. 
When the dominant timescale was considered, 
US-Fuf, US-Vcm, and US-Vcp had 1, 2, and 2 
more years of drought, respectively. In shrub-
lands, consideration of the dominant timescale 
(SPEI2Aug) indicated fewer years of drought 
than did annual SPEI (Table  4). There were 3, 
2, and 2 fewer drought years as defined by the 
dominant timescale for US-Srm, US-Ses, and US-
Whs, respectively. In grasslands, the number of 
drought years indicated by SPEI at the dominant 
timescale (SPEI3Sep) was similar to the num-

ber of drought years indicated by annual SPEI 
(Table  4). Considering the dominant timescale 
indicated one less drought year for both US-Wkg 
and US-Seg compared to annual SPEI (Table 4). 
Overall, considering the annual SPEI rather than 
SPEI at the dominant timescale underestimates 
the number of drought years in forests and over-
estimates the number of drought years in shrub-
lands. These sub-annual calculations of SPEI are 
more indicative of the climate conditions that 
influence vegetation production in Southwest 
ecosystems than annual SPEI.

Modeling results
The SPEI calculated in month m at an n-

month timescale is described here as SPEInm, 
where SPEI calculated in September at a 9-month 
timescale is referred to as SPEI9Sep. Similarly, 
standardized precipitation and maximum tem-
perature over the dominant timescale are de-
scribed as PnmS and Tmaxnms

 where, for example, 
standardized precipitation averaged over at a 
9-month timescale from January to September 
is referred to as P9SepS.

For Southwest forests, the model based on 
SPEI calculated in September at a 9-month times-
cale (SPEI9Sep) was selected (AICc = 51.4), where 

� (8)EVImaxS(y)
=0.771(SPEI9Sep)+0.712

Table 3. Comparison of the late 20th century (1980–1999) climate conditions with conditions in the early 21st 
century (2000–2013) at the eight study sites.

Biome Site

Consecutive  
dry years 
2000–2013

Consecutive 
dry years 
1980–1999

Warm season  
ΔT (°C)

Cool season 
ΔT (°C)

Warm season 
ΔP (mm)

Cool season 
ΔP (mm)

Forest US-Fuf 5 1 0.73 0.49 −62.61 −42.13
US-Vcm 8 1 1.54 0.90 −88.54 −43.48
US-Vcp 8 1 1.47 0.82 −84.62 −40.48
Mean Forest Sites 1.25 0.74 −78.59 −42.03

Shrubland US-Srm 8 2 0.81 0.45 −39.19 −85.73
US-Ses 6 3 0.66 0.05 −27.76 −10.05
US-Whs 6 2 0.75 0.35 −5.88 −60.03
Mean Shrubland Sites 0.74 0.29 −24.28 −51.93

Grassland US-Wkg 6 2 0.67 0.23 −12.62 −78.50
US-Seg 6 3 0.65 0.05 −25.14 −7.50
Mean Grassland Sites  0.66 0.14 −18.88 −43.00

Notes: “Consecutive Dry Years” is defined as the number of consecutive years where 12-month SPEI (calculated from 1 km 
Daymet data) <0. Warm season (April–September) and cool season (October–March) ΔT is defined as the change in tempera-
ture (in °C) between the early 21st century and late 20th century mean seasonal temperatures. Warm season and cool season 
ΔP is the change in precipitation (in mm) between the early 21st century and late 20th century mean seasonal precipitation. 
Bold values represent the mean warm and cool season ΔP and ΔT by biome.

Table  2. Differences between the historic mean 
SPEI (1950–1999) and mean SPEI during the early 
21st century (2000–2013) using SPEI calculated 
from the Global Drought Monitor for the eight 
study sites.

Site

Historic mean 
SPEI 

(1950–1999)

21st century mean 
SPEI  

(2000–2013)

US-Wkg 0.154 −0.774*
US-Whs 0.148 −0.676*
US-Srm 0.164 −0.796*
US-Seg & US-Ses 0.012 −0.148
US-Fuf 0.185 −0.920*
US-Vcm & US-Vcp 0.157 −0.790*

Note: Asterisks represent significant differences (p < 0.05) 
between 21st century and historic mean SPEI values.
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explained 45% of the variance in EVIsmax(y)
 with 

a root mean squared error (RMSE)  =  0.572 for 
the residuals of modeled vs. measured EVIsmaxS

 
(Fig. 5a).

For Southwest shrublands, the most parsimo-
nious model (AICc  =  93.3) was based on SPEI  

calculated in August at a 2-month timescale 
(SPEI2Aug, representing the cumulative water 
balance from July to August) (Table  5). The se-
lected model, 

� (9)EVImaxS(y)
=0.668(SPEI2Aug)

Fig. 4. The dynamic timescale of ecosystem response to combined precipitation and temperature (SPEI) for 
forests (a), shrublands (b), and grasslands (c). Points represent the correlation coefficient r between EVImax and 
SPEI ranging from 1 to 12 months, calculated back from July, August, and September.

Table 4. Revisit of drought conditions at the dominant timescale for each site.

Biome Site

Drought years  
(2000–2013) SPEI  

annual  
timescale

Drought years  
(2000–2013) SPEI  

dominant  
timescale

ΔDrought  
years

Forest (SPEI9Sep) US-Fuf 5 6 1
US-Vcm 7 9 2
US-Vcp 7 9 2

Shrubland (SPEI2Aug) US-Srm 6 3 −3
US-Ses 8 6 −2
US-Whs 6 6 −2

Grassland (SPEI3Sep) US-Wkg 8 7 −1
US-Seg 6 5 −1

Notes: The number of years of drought (SPEI < −0.5) as determined by SPEI at the annual timescale (October–September) is 
compared to the number of drought years for the dominant timescale. The difference between the number of drought years 
using SPEI at the dominant timescale and annual SPEI is also represented. Positive values of “ΔDrought Years” indicates there 
were more drought years defined by the dominant timescale of SPEI than annual SPEI, and negative values indicate there were 
fewer drought years defined by the dominant timescale.
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explained 45% of the variance in EVIsmax(y)
 and 

the residuals of modeled vs. measured values of 
EVImaxS

 resulted in an RMSE = 0.712 (Fig. 5b).
For Southwest grasslands, the model with 

best results was based on SPEI calculated in 
September at a 4-month timescale (SPEI3Sep 
representing the cumulative water balance 
from July to September) (AICc = 61.3) (Table 5). 
The other three models were much less parsi-
monious, and were not selected. The selected 
model, 

� (10)

explained 54% of the variance in EVISmax
 and 

the residuals of modeled vs. measured values of 
EVImaxS

 resulted in an RMSE = 0.650 (Fig. 5c). No-
tably, the previous-year’s EVImax was not a sig-
nificant predictor of the current year’s EVImax in 
grasslands, shrublands or forests.

In summary, all three selected models were 
based on SPEI, which accounts for both precip-
itation and temperature at the dominant times-
cale for each biome. The ability of the SPEI to 
explain interannual variation in EVImaxS

 could 
indicate: (1) the effect of temperature on the wa-
ter balance (as reflected by SPEI) explains vari-
ation in EVImaxS

 beyond the simple combination 
of precipitation and temperature; or (2) SPEI, 
because it accounts for the effects of sub-annual 

climate dynamics on production, identifies 
the critical time period during which climate 
dynamics influence interannual variation in 
EVImax. To identify whether variation in EVImaxS

 
was primarily explained by (1) SPEI itself or 
(2) the dominant timescale as identified by the 
SPEI, we tested the SPEI model against precip-
itation and temperature over the timescale of 
the most parsimonious SPEI model. In forests, 
the model based on precipitation in January 
through September (P9Sep) was more parsimo-
nious than the model based on either SPEI9Sep 
or P9Sep combined with Tmax9Sep

 (ΔAICc  =  −1.3 
and 0.2; Table  6). Similarly, in shrublands the 
most parsimonious model was based solely on 
precipitation; precipitation in July and August 
(P2Aug) was a better model than SPEI2Aug or 
P2Aug combined with Tmax2Aug

 (ΔAICc = 5.4 and 
2.5; Table 6). In grasslands, P3Sep combined with 
Tmax3Sep

 was the more parsimonious than P3Sep 
alone or SPEI3Sep (ΔAICc = 5.4 and 1.3; Table 6). 
Overall, differences in explanatory power of 
models based on SPEI, precipitation, and com-
bined precipitation and temperature were small 
within the dominant timescale for each biome. 
These results suggest that climate dynamics 
within the dominant timescale, rather than the 
SPEI, predominantly explained interannual 
variation in EVImaxS

.

EVImaxS(y)
=0.660(SPEI3Sep)

Fig. 5. Relation between measured and modeled standardized maximum Enhanced Vegetation Index (EVI) 
(EVImaxS

) and the most parsimonious model for each biome. (a) Forest model based on Eq. 8 (SPEI9Sep) based on 
two forest sites (US-Vcm, US-Vcp), (b) Shrubland model based on Eq. 9 (SPEI2Aug) based on 3 shrubland sites 
(US-Ses, US-Srm, US-Whs), and (c) Grassland model based on Eq. 10 (SPEI3Sep) based on 2 grassland sites (US-
Seg, US-Wkg). RMSE is the root mean squared error of the difference between measured and modeled EVImax. 
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Discerning mechanisms
Of the models based on Eqs.  4–7, the most 

parsimonious models for forest, shrublands and 
grasslands were all based on sub-annual SPEI. 
However, further examination of the effect of 
precipitation, temperature, and SPEI on EVImaxS

 
(Table 6) suggested that climate dynamics within 
the dominant timescale, rather than SPEI, were 
the key drivers of interannual variation in veg-
etation production. Therefore, our efforts to 
discern the mechanisms, defined in our 

introduction as the underlying causes of eco-
system functional responses, were focused on 
disentangling the effects of precipitation and 
temperature during the dominant timescale for 
each biome as defined by SPEI analysis (see 
Table 5), recognizing that plant physiology and 
biogeochemical interactions further underlie 
these relationships. In forests, the dominant 
timescale was January through September, in 
shrublands the dominant timescale was July 
and August; and in grasslands, the dominant 

Table 5. Comparison of models predicting current year peak EVI (EVImaxS(y)
) as a function of current year pre-

cipitation (PTS(y)), previous year peak EVI (EVImaxS(y−1)
), and SPEI at the three timescales with the maximum 

correlation with EVImaxS
 (see Figs. 5–7). Selected models are shown in boldface.

Biome Model AICc ΔAICc r2

Forest 
n = 24

SPEI9Sep 51.4 0 0.45
PTS(y) + EVImaxS(y−1)

57.7 6.3 0.22ns

PcoolS + TmaxwarmS
57.9 6.5 0.29

PTS(y) 59 7.6 0.15ns

Shrubland 
n = 39

SPEI2Aug 93.3 0 0.45
PTS(y) + EVImaxS(y−1)

98.1 4.8 0.25
PcoolS + TmaxwarmS

107.3 14 0.22
PTS(y) 111.6 18.3 0.07ns

Grassland 
n = 26

SPEI3Sep 61.3 0 0.54
Pcool S + TmaxwarmS

71.2 9.9 0.32
PTS(y) + EVImaxS(y−1)

75.9 14.6 0.08ns

PTS(y) 76.8 15.5 0.07ns

Notes: AICc is Akaike’s information criterion corrected for small sample sizes. Models are ranked by ΔAICc, from zero to 
higher values. If ΔAICc values for two candidate models differed by <2, we selected the model with the fewest parameters. 
Italicized r2 values with the superscript “ns” were nonsignificant (P  >  0.05). AICc values for nonsignificant models are 
italicized.

Table 6. Comparison of models predicting current year EVImaxS as a function of SPEI at the dominant timescale 
for each biome compared to precipitation, and precipitation and temperature models for the corresponding 
timescale. Selected models are shown in boldface.

Biome Model AICc ΔAICc r2

Forest SPEI9Sep 51.4 0 0.45
P9Sep 52.7 1.3 0.35
P9Sep + Tmax9Sep

52.9 1.5 0.42
Shrubland P2Aug 87.9 0 0.49

P2Aug + Tmax2Aug
90.4 2.5 0.49

SPEI2Aug 93.3 5.4 0.45
Grassland P3Sep+Tmax3Sep

60 0 0.56
SPEI3Sep 61.3 1.3 0.52
P3Sep 65.4 5.4 0.4

Notes: AICc is Akaike’s information criterion corrected for small sample sizes. Models are ranked by ΔAICc, from zero to 
higher values. Selected models are shown in boldface. If ΔAICc values for two candidate models differed by <2, we selected the 
model with the fewest parameters.
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timescale was July through September. We also 
explored the effect of atmospheric demand 
(VPD) on production.

In forests, the relative importance of precip-
itation and temperature shifted throughout 
the dominant timescale (January–September) 
(Fig. 6a). In the latter half of the cool season (Jan-
uary–April), both precipitation and daily Tmax 
were strongly correlated with standardized max-
imum GEP (GEPmaxS

) (r = 0.89 and r = −0.93, re-
spectively). Soil moisture recharge in Southwest 
forests generally depends on winter precipitation 
(Swetnam and Betancourt 1998). Warm tempera-
tures in early spring lead to earlier snowmelt and 
an earlier onset of the growing season (Barnett 
et  al. 2005). In the warm season (May–Septem-
ber), daily Tmax was negatively correlated with 
GEPmaxS

 (r  =  −0.64), and precipitation had little 
effect (r  =  0.26). Additionally, both cool season 
and warm season VPD was negatively related to 
GEPmaxS

 (r = −0.88 and r = −0.97, respectively). On 
the basis of Williams et al. (2013), we evaluated 
the relationship between daily maximum tem-
perature and daily production in May, June, and 
July and found a break point in mean daily Tmax 
for the forest site, US-Fuf (Fig. 7). At temperatures 
below 17°C, daily GEP was positively related to 
temperature, but at temperatures above 17°C, dai-
ly maximum temperature was negatively related 
to GEP. The two separate linear regressions with 
this breakpoint explained 43% of the variance in 
daily GEP in May, June and July. Overall, these 
results support the importance of cool-season 
precipitation and warm-season temperature and 
VPD on Southwest forest productivity.

In shrublands, EVImax was most strongly 
linked with the 2-month SPEI in July and August. 
This time period coincided with the strong mon-
soon rains in these ecosystems. At US-Whs, the 
correlation between July/August precipitation 
and GEPmaxS

 was stronger than the correlation 
between Tmax and GEPmaxS

 (r = 0.93, and r = −0.70, 
respectively) (Fig. 6b). Correlations between cli-
mate drivers and GEPmaxS

 during the rest of the 
year were weaker. The correlation of VPD in July 
and August on GEPmaxS

 was strong (r  =  −0.87), 
but VPD throughout the rest of the year had little 
effect on GEPmaxS

. At US-Srm, the correlation be-
tween July/August Tmax and GEPmaxS

 was stron-
ger than the correlation between precipitation 
and GEPmaxS

 (r = 0.67 and r = −0.78, respectively). 

Temperature and precipitation throughout the 
rest of the year had little correlation with GEPmaxS

 
(Fig. 6c). VPD in July and August had a strong 
negative correlation on GEPmaxS

 (r  =  −0.78), but 
there was little relationship between VPD in oth-
er months and GEPmaxS

.
During the dominant timescale (July–Sep-

tember) at Kendall Grassland (US-Wkg), the 
correlation between precipitation and GEPmaxS

 
was strong in both July/August and Septem-
ber/October (r  =  0.68 and r  =  0.69, respective-
ly). The influence of Tmax and VPD on GEPmaxS

 
was strongest in July and August (r = −0.50 and 
r = −0.67, respectively), and weak in September/
October (Fig.  6d). Exploration of the effect of 
VPD on daily GEP by month revealed a non-
linear but negative relationship between VPD 
and GEP, where GEP was very low or zero at 
high VPD, however, July was the only month 
where VPD regularly exceeded 3kPA (Fig.  8). 
Daily GEP was negatively influenced by VPD, 
but the strength of the negative effect was stron-
gest in July, early in the growing season. In 2006, 
US-Wkg experienced a drought-induced vege-
tation transition from native grasses, to a flush 
of forbs, to eventual establishment of invasive 
grasses in 2007 and beyond (Scott et  al. 2010). 
Although the vegetation transition is a potential 
confounding factor, the site was dominated by 
grasses in every year in the study period except 
2006. To preserve temporal continuity, 2006 was 
included in the analysis.

The effects of the 21st-century drought on biomes 
across the U.S. Southwest

In studies of Southwest plant communities 
during the 21st century drought, research has 
predominantly focused on the effects of reduced 
precipitation on growth. Our work shows that 
there are critical sub-annual climate periods 
during which precipitation and temperature 
interact to influence vegetation production 
across biomes. This indicates that the interaction 
between precipitation and temperature impacts 
plant communities across biomes in the 
Southwest. Our results underscore the need to 
integrate the effect of temperature on the water 
balance in models of interannual production, 
even in ecosystems commonly thought to be 
largely influenced by precipitation, such as 
grasslands. In addition, our results underscore 
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Fig. 6. The correlation coefficient r between daily climate variables (P, Tmax, and VPD, vapor pressure deficit) 
and standardized maximum gross ecosystem production (GEP) (GEPmaxS

) integrated over various time intervals 
in forests (a), shrublands (b and c), and grasslands (d). Forests had a longer dominant timescale and thus longer 
integration intervals were used in forest analyses (a). Points represent the correlation coefficient r between 
climate drivers (precipitation and Tmax) and GEPmaxS

. Bars represent the correlation coefficient between VPD and 
GEPmaxS.
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the importance of the intra-annual dynamics 
of climate drivers. Peak production was related 
to sub-annual SPEI in forests, shrublands, and 

grasslands, suggesting that intra-annual climate 
dynamics, rather than annual conditions, in-
fluence growth. Furthermore, our results indi-
cate that ecosystem phenology is an important 
factor in assessing the impact of drought on 
productivity. A revisit of drought conditions 
at the dominant timescale indicated that 
Southwest forests have suffered more severe 
drought than shrublands or grasslands, which 
may further explain the decline of Southwest 
forests during the 21st century drought 
(Williams et al. 2013). Overall, an improved 
understanding of interannual variability in pro-
duction across biomes was provided by the 
inclusion of the effect of temperature on the 
water balance and the consideration of the 
dominant timescale.

Understanding the empirical relationships  
underlying these ecosystem functional respons-
es provided further insight into the sub-annual 
climate dynamics. We focused here on inter- and 
intra- annual changes in GEP and ecosystem 
phenology as ecological mechanisms. Site-level 
GEP correlations with climate drivers indicated 
that forest production was driven by cool sea-
son precipitation but constrained by high warm  

Fig. 8. The relationship between GEPmax and VPD during July (a) and August and September (b) at the US-
Wkg (Kendall Grassland) site. The coefficient of determination (R2) for each relationship is in the top right corner 
of each panel. Years are next to data points.

Fig. 7. Scatterplot of daily gross ecosystem production 
(GEP) against daily maximum temperature (Tmax) in 
May, June, and July measured at the US-Fuf site. Lines 
are fits from linear regression models. Vertical dashed 
line represents statistically determined breakpoint.
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season temperatures. In shrublands and grass-
lands, production was driven by summer pre-
cipitation and constrained by high warm season 
temperatures. Grasslands and shrublands oper-
ated at similar dominant timescales, though the 
timescale for grasslands was slightly longer than 
that of shrublands (3 months vs. 2 months). Com-
pared to other biomes, grasslands respond quick-
ly to even small precipitation events through 
rapid carbon upregulation and regrowth (Ha-
merlynck et al. 2010, Scott et al. 2010). This quick 
response may allow them to be more respon-
sive to late growing season precipitation, thus 
explaining the longer time scale. Grassland and 
shrubland production were both constrained by 
high VPD and temperature. However they dif-
fered subtly: in grasslands, the negative effect of 
high VPD and temperature was strongest early in 
the growing season in July, while in shrublands, 
the negative effect of high VPD and temperature 
was strong throughout the dominant timescale 
(July–August). Small increases in temperature 
have an exponential effect on VPD, which is re-
flected in the strong negative correlation between 
VPD and GEPmaxS

 throughout the dominant 
timescale for all biomes.

The use of satellite observations of vegetation 
greenness to approximate ANPP has been a com-
mon practice over the past 30  yr (e.g., Goward 
et al. 1985 to Zhang et al. 2015). The theoretical 
basis for this link is based on the direct relation-
ship between the interaction of solar radiation 
with the plant canopy and vegetation production 
(Huete et al. 2015). Many studies use vegetation 
indices as surrogates for ANPP (e.g., Ponce-
Campos et al. 2013, Zhang et al. 2013, Moran 
et al. 2014). In situ measurements of ANPP result 
in uncertainties due to inconsistent sampling 
procedures across and within sites (Sala et  al. 
1988) and variability in the timing of peak green-
ness (Huete et al. 2015). Satellite measurements 
can provide greater temporal stability and less 
spatial uncertainty than plot-scale ANPP mea-
surements in cross-site, long-term studies (Mo-
ran et al. 2014). Although we do not claim EVImax 
is a surrogate for ANPP, the importance of sub-
annual climate dynamics likely extends to ANPP.

The mechanisms controlling plant-water re-
lations exert strong controls on the feedback 
between vegetation and climate via the carbon, 
water, and energy balance of the ecosystem. 

The projected future terrestrial carbon sink var-
ies considerably depending on which land sur-
face model makes the projection (Friedlingstein 
et  al. 2014) and an assessment of eight models 
from the coupled model intercomparison project 
(CMIP5) indicates that model differences in the 
carbon uptake response to temperature, precip-
itation, and soil moisture are an important part 
of this variation (Shao et al. 2013). The empirical 
relationships evident from this study (Tables  5 
and 6) indicate that the effects of temperature 
and moisture on carbon gain in arid ecosystems 
are not easily separated. However they provide 
an opportunity to evaluate different models, as 
different hypothesized relationships between 
the carbon and hydrological cycles. In carrying 
out these evaluations we recommend that car-
bon water relationships at sub-annual timescales 
should be explored. Insofar as EVI can be used 
as a proximate ecosystem response variable, 
the availability of soil moisture estimates from  
NASA’s Soil Moisture Active Passive (SMAP)  
allows our findings to be explored for some  
ecosystems across large geographic areas more 
suited to comparison with land surface models.

Overall, this study identified the existence of 
critical climatic timescales that influence pro-
ductivity across biomes. Within these dominant 
timescales, consideration of the effects of tem-
perature in addition to precipitation allowed 
us to improve predictions of plant functional 
responses to climate. Predicted higher tempera-
tures in the Southwest will increase evaporative 
demand (Breshears et al. 2013) and drought se-
verity (Cayan et al. 2010). Our results suggest that 
the co-occurrence of drought and high tempera-
tures during critical sub-annual periods could 
reduce annual production, regardless of climate 
conditions throughout the rest of the year.

Concluding Remarks

This work has uncovered convergences in the 
timing and relative importance of climate drivers 
of productivity across the forest-to-grassland 
continuum in the southwest United States. 
Interpretation of model results with flux data 
underscores the importance of investigating 
climate drivers at multiple temporal scales. 
Examination of daily GEP yielded important 
insights into the effects of temperature on 
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production underlying the annual model results. 
The coupled approach (remotely sensed obser-
vations and in situ flux measurements) has the 
potential to generalize the functional responses 
of vegetation to predicted future climate 
conditions.
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