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Summary

� Understanding how exogenous and endogenous factors and above-ground–below-ground

linkages modulate carbon dynamics is difficult because of the influences of antecedent

conditions. For example, there are variable lags between above-ground assimilation and

below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned.

Nonetheless, developing models linking above- and below-ground processes is crucial for

estimating current and future carbon dynamics.
� We collected data on leaf-level photosynthesis (Asat) and soil respiration (Rsoil) in different

microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated

timescales over which endogenous and exogenous factors control Rsoil by analyzing data in

the context of a semimechanistic temperature–response model of Rsoil that incorporated

effects of antecedent exogenous (soil water) and endogenous (Asat) conditions.
� For both microhabitats, antecedent soil water and Asat significantly affected Rsoil, but Rsoil

under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1

and 3 d before the Rsoil measurement were most important in determining current-day Rsoil

under bunchgrasses and shrubs, respectively, indicating a significant lag effect.
� Endogenous and exogenous controls are critical drivers of Rsoil, but the relative importance

and the timescale over which each factor affects Rsoil depends on above-ground vegetation

and ecosystem structure characteristics.

Introduction

Soil respiration (Rsoil) represents a substantial source of CO2 to
the atmosphere, sometimes in excess of 70% of total ecosystem
respiratory efflux (Janssens et al., 2001; Law et al., 2001; Barron-
Gafford et al., 2011). Rsoil can also be a variable carbon flux,
making its quantification important for improving our ability to
predict ecosystem carbon dynamics. Of special interest is the
influence of biotic (e.g. above-ground plant function) and abiotic
(e.g. environmental) drivers on Rsoil. Over the last decade,
substantial progress has been made in modeling Rsoil by moving
beyond simple temperature response functions (see Lloyd &
Taylor, 1994; Davidson et al., 2006, 2012) to developing frame-
works and models for water-limited semiarid systems (Huxman
et al., 2004; Cable et al., 2008; Lellei-Kov�acs et al., 2011), includ-
ing multiple vegetative cover types or soil microhabitats (Cable
et al., 2009; Zhang et al., 2009; Jin et al., 2010), and incorporat-
ing antecedent environmental effects (Zhou et al., 2011; Cable
et al., 2012).

Despite this progress, there are still significant challenges in
mechanistically understanding carbon efflux processes in soils.
For example, little has been done to explicitly describe how Rsoil
is influenced by the combined effects of leaf-level plant physio-
logical activity and antecedent environmental conditions, as has
been called for in the literature (Vargas et al., 2011). Such pro-
cesses are hypothesized to be responsible for current modeling
challenges that limit our predictive abilities on fine timescales
(Barron-Gafford et al., 2011). Quantifying the effect of endoge-
nous (e.g. physiological processes such as photosynthetic carbon
fixation) and exogenous (e.g. environmental features that influ-
ence metabolic processes driving carbon utilization) factors has
the potential to greatly advance our theory on underlying sensi-
tivities of Rsoil to different global change drivers and may improve
our ability to quantify and predict ecosystem carbon balance in
natural settings.

Dependence of Rsoil on above-ground plant carbon fixation
has been hypothesized as a source of within-day variation in Rsoil
(H€ogberg et al., 2001, 2009; Tang et al., 2005; Baldocchi et al.,
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2006; Gaumont-Guay et al., 2006; Carbone & Trumbore, 2007;
Barron-Gafford et al., 2011; Carbone et al., 2011; Niu et al.,
2011). In particular, the hysteretic relationship of Rsoil with tem-
perature may be the result of abiotic forcings (Phillips et al.,
2010), but it may also be tied to subdaily lags in recently fixed
carbohydrate transport from the leaves to the roots. It has been
hypothesized that a stimulation of rhizosphere respiration from
late-afternoon root exudation of recent photosynthates induces a
higher Rsoil than early-morning rates occurring at a similar tem-
perature (Barron-Gafford et al., 2011). Understanding the physi-
ological dynamics of such a time-lag would be a powerful tool to
assist in the prediction of rhizosphere carbon processes. We
might expect this antecedent effect to be a function of the type
and size of vegetation (e.g. grass, shrub, etc.), wherein large
woody plants tend to have longer phloem transport times than
herbaceous plants (Carbone & Trumbore, 2007; Vargas et al.,
2011). Thus, the vegetative composition of an ecosystem may be
important in determining the period over which antecedent
(prior) plant carbon gain is important for Rsoil.

Shifts in the distribution of vegetation is a widespread feature
of global change, and understanding how these community-level
changes affect ecosystem processes has been a goal of modern
ecology for some time. For example, many regions of North
America have experienced widespread changes in the relationship
between grass and shrub life forms (Goodale & Davidson, 2002).
In the context of Rsoil, the distribution and dominance of woody
plants relative to grasses may determine not only the importance
of endogenous and exogenous effects on Rsoil, but also the time-
scales over which these effects are important for Rsoil. Increased
woody plant cover affects canopy structure and influences ecosys-
tem processes as a result of changes in trait composition, such as
vertical root distribution (Schenk & Jackson, 2002) and maxi-
mum rooting depth (Canadell et al., 1996; Hultine et al., 2006).
Such traits are related to plant photosynthetic capacity and plant-
specific responses to environmental stress (Potts et al., 2006;
Barron-Gafford et al., 2012), both endogenous factors likely to
influence below-ground processes such as Rsoil. Additionally,
woody plants shade and cool the soil (Martens et al., 2000;
McLain et al., 2008; Villegas et al., 2010b), which can extend
periods of elevated surface soil moisture as a result of reduced soil
evaporation (Scholes & Archer, 2007; Breshears et al., 2009;
Villegas et al., 2010a,b). Moisture and temperature are major
exogenous drivers of Rsoil, but how they differentially affect extant
and antecedent conditions across various microhabitats and their
combined influence on Rsoil are poorly understood (Cable et al.,
2009; Barron-Gafford et al., 2011).

How exogenous and endogenous conditions modulate ecosys-
tem carbon dynamics in the context of mixed vegetation ecosys-
tems is difficult to assess because of the potential, but hidden,
role that antecedent conditions may play in driving current
fluxes. Therefore, the objectives of this study were as follows: to
quantify the response of Rsoil to current and previous tempera-
ture, soil water content, and leaf-level carbon gain in a
grass–shrub mixed ecosystem; and to determine the critical time
periods over which antecedent exogenous (soil water) and
endogenous (photosynthesis) factors influence Rsoil rates. We

accomplished this by integrating datasets of above-ground plant
carbon gain and Rsoil collected at different spatial and temporal
resolutions. The datasets were used to inform a simple model of
leaf-level photosynthesis, which was coupled to a semimechanis-
tic model of Rsoil. The coupled model performed well across a
number of vegetation microhabitat settings and provided us the
means to evaluate the relative roles of endogenous and exogenous
factors in controlling Rsoil in a semiarid shrubland.

Materials and Methods

Site information

The study site is located in the Santa Rita Experimental Range
(31.8214°N, 110.8661°W, elevation: 1116 m a.s.l.) south of
Tucson, AZ, USA. The site was historically a grassland, but is
now dominated by velvet mesquite (Prosopis velutina Woot.),
which covers c. 35% of the c. 2800 m2 study site. Much of the in-
tercanopy space consists of a mosaic of bunchgrasses (predomi-
nantly Eragrostis lehmanniana Nees, but also including Digitaria
californica Benth and Bouteloua eriopoda). Soils here are a deep
sandy loam (Scott et al., 2009), and the mean depth to ground-
water at the upland site exceeds 100 m (Barron-Gafford et al.,
2013). Mean annual precipitation is 375 mm, with c. 50% falling
in July–September as part of the North American monsoon
(Fig. 1c).

An eddy covariance tower was installed at the site in 2004 to
continuously monitor ecosystem-scale carbon, water, and energy
exchange, as well as all associated meteorological variables (Scott
et al., 2009). Thirty-minute measurements of soil moisture
(CS616, Campbell Scientific, Logan, UT, USA) and soil temper-
ature (T108, Campbell Scientific) were made at 5, 10, and 50 cm
depths, under both mesquite and E. lehmanniana bunchgrass
microhabitats (Scott et al., 2009). Thirty-minute measurements
of incoming photosynthetically active radiation (PAR; LI-190,
Li-Cor, Lincoln, NE, USA), air temperature and relative humid-
ity (HMP35D, Vaisala, Helsinki, Finland) were made 8 m above
ground.

Manual soil respiration measurements

To evaluate exogenous (soil moisture and temperature) and
endogenous (photosynthetic gain) drivers of soil respiration
(Rsoil), we measured Rsoil throughout an entire growing season, at
nearly biweekly intervals for a total of 27 d of measurement in
2007. Rsoil was measured within P. velutina (hereafter, ‘mes-
quite’) and E. lehmanniana (‘bunchgrass’) microhabitats using a
custom chamber and permanently installed soil collars (diame-
ter = 10.2 cm; depth = 5 cm). As described in Barron-Gafford
et al. (2011), collars were installed every 10 m along 50 m tran-
sects, whereby we identified the closest P. velutina and
E. lehmanniana individual and placed a collar halfway between
the base of the plant and the canopy dripline. Transects ran west
and south from the eddy covariance tower, yielding a total of 20
collars (five collars per transect9 two transects per microhabitat
type9 two microhabitat types).
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To measure Rsoil, we used a 3 l opaque PVC soil chamber con-
nected to a portable CO2 gas analyzer (LI-840, Li-Cor Bioscienc-
es) interfaced with a laptop for data collection and storage, as
described by Cable et al. (2008) and Barron-Gafford et al.
(2011). The accumulation of CO2 in the chamber over time fol-
lowed a straight line, and we fitted a linear regression of CO2 vs
time to obtain the rate of change (slope of line: ppm s�1). We
converted the slope of this line to a flux density with volume/area
corrections (Pearcy et al., 1990), providing a measurement of
Rsoil (lmol CO2 m

�2 s�1), as has been described for this mea-
surement system (Cable et al., 2009; Barron-Gafford et al.,
2011). Associated with each Rsoil measurement, soil moisture
integrated over 0–12 cm was measured in the collar using a hand-
held water content sensor (HydroSense system, Campbell Scien-
tific Inc.), and soil temperature from 0 to 10 cm was measured
using a temperature probe (Temp-100, Oakton Instruments,

Vernon Hills, IL, USA). Near-surface air and surface soil temper-
ature were also measured using thermocouples installed within
the soil chamber. These measurements were repeated across 14 d,
spanning all seasons (DOY 10, 24, 35, 47, 61, 84, 96, 113, 132,
145, 160, 177, 189, 200, 209, 210, 211, 216, 233, 236, 245,
261, 283, 301, 316, 330, 362; Fig. 1b).

Leaf-level measurements of photosynthetic activity

Light-saturated photosynthetic CO2 assimilation (Asat) was mea-
sured on five P. velutina and five E. lehmanniana individuals at the
site using a portable gas-exchange system (LI-6400; Li-Cor),
which allows the user to create a stable microenvironment that
mimics ambient conditions outside the cuvette (LI-6400 manual;
Li-Cor Biosciences, 2013). Within each species, individual plants
were of similar size and located along the Rsoil transects described

(a)

(b)

(c)

Fig. 1 (a, b) Time series of light-saturated
photosynthesis (Asat) (a) and soil respiration
rates (Rsoil) (b). Data are shown for two
microhabitats (mesquite, triangles/black line;
bunchgrass, circles/gray line) collected across
7 d spanning all seasonal periods, as
illustrated by precipitation (black bars) and
observed enhanced vegetation index (EVI,
squares) (c), which represents the
‘greenness’ of the site. Each point represents
the mean (� 1 SE) of 10 individual
measurements, although the individual
measurements (N = 30 for Asat, N = 144 for
Rsoil) were used in the Bayesian analysis. A
simple spline curve connects the points in
time. Using the individual observations in our
analysis was required to estimate the spatial
effects and to link the individual
measurements to the collar-level covariates.
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earlier. As described by Barron-Gafford et al. (2012), Asat mea-
surements were made mid-morning to midday (10:00–13:00 h
local time) at a constant irradiance of 1500 lmol m�2 s�1, as
delivered by the LI-6400 red-blue light source (LI-6400-02b).
Once clamped into the chamber, the leaf was acclimated to a CO2

setpoint of 375 ppm, while exposed to ambient temperature and
relative humidity at a constant flow rate of 500 lmol s�1. Leaves
placed into the cuvette were allowed to acclimate and stabilize for
a minimum of 10 min before gas exchange measurements. All
measures were conducted on intact leaves on the southern side
of the plant, midway up the canopy. Asat measurements were
repeated during multiple periods throughout the growing season
(pre-monsoon, during the monsoon, and post-monsoon) to
capture a spectrum of physiological activity, across a range of tem-
perature, precipitation, and soil moisture conditions. Conducting
measurements across this range of states was critical to capturing
phenological patterns of plant and soil activity. In total, Asat was
measured on seven individual days in 2007 (DOY 176, 193, 215,
232, 259, 275, 282) for a total of 70 measurements (Fig. 1a).

Data analysis framework

We combined our measurements of Rsoil, Asat, and associated
environmental drivers to infer endogenous (Asat) and exogenous
influences on Rsoil. We achieved this by way of a Bayesian model-
ing framework (Wikle, 2003; Clark, 2005; Clark & Gelfand,
2006; Xie & Carlin, 2006) that integrates these datasets that are
misaligned in space and time, propagates uncertainty in Asat to
Rsoil, and yields estimates and associated uncertainties for param-
eters describing endogenous and exogenous influences on Rsoil.
Our Bayesian framework comprised three primary components:
a data model that describes the likelihoods of the observed Asat

and Rsoil; a process model that includes a simple linear model for
Asat and a nonlinear model for Rsoil that incorporates spatial and
temporal random effects; and a parameter model that specifies
prior distributions for process model parameters and all variance
terms. Together, these components were used to generate poster-
ior distributions of parameters that modulate rates and responses
of Asat and Rsoil. That is, the parameters describe the effects of
current environmental conditions, past environmental condi-
tions, and the linkages between above-ground carbon gain and
below-ground carbon efflux.

Data and process models for Asat and Rsoil

For the data models, we assumed that each Asat observation is
normally distributed with mean lAsat and a variance that we esti-
mated. Thus, for observation i (i = 1, 2,…, 70) and microhabitat
m (mesquite or bunchgrass) associated with i, the process model
for lAsat is given by the linear regression:

lAsatfig ¼ c1fmg þ c2fmgTairmaxfig þ c3fmgVPDmaxfig
þ c4fmgSWCfig Eqn 1

where Tair max, VPDmax, SWC, lAsat represent the daily maxi-
mum air temperature (°C), maximum vapor pressure deficit

(kPa), and soil water content at 5 cm (v/v) on each measurement
day, respectively. Previous analyses suggest that near-surface soil
moisture (5 cm) is an appropriate correlate for seasonal dynamics
of photosynthetic function within this well drained, sandy soil
(Barron-Gafford et al., 2012). The main effects of these environ-
mental drivers are captured by c2, c3, and c4; all c parameters vary
by m to allow for microhabitat differences in the sensitivity to
each environmental driver. Using these parameter estimates and
the environmental data from the site’s eddy covariance station,
we generated daily estimates or predictions of Asat, which we refer
to as Apred. Therefore, Apred associated with each day of year d
(d = 1, 2,…, 365) and microhabitat m (mesquite or bunchgrass)
is given by:

Apredfd ;mg ¼ c1fmg þ c2fmgTairmaxfdg þ c3fmgVPDmaxfdg
�
þc4fmgSWCfdg

�
EVIfdg

Eqn 2

where Tair max, VPDmax, and SWC were computed from the eddy
covariance station data. To account for the development of sea-
sonal vegetation cover, we rescaled the mean growing season Asat

(i.e. as given by Eqn 1 for lAsat,) by the MODIS enhanced vege-
tation index (EVI) estimated for the site for 2007 (Scott et al.,
2009) to obtain Apred. It is important to note that this simple
model for predicting photosynthesis is not meant to replace more
mechanistic, higher-order models of photosynthesis (sensu Farqu-
har et al., 1980; von Caemmerer, 2000) or develop a model of
plant function that is more specific to this system. Rather, efforts
were focused on linking above-ground uptake and below-ground
processes, and the models described in Eqns 1 and 2 yield an
appropriate estimate of that photosynthetic uptake.

Next, we assumed that each observation of loge(Rsoil) is nor-
mally distributed with mean lLR (natural log scale) and a vari-
ance that we estimated (Cable et al., 2008, 2011). The process
model for lLR is based on an Arrhenius-type function described
by Lloyd & Taylor (1994) that was modified by Cable et al.
(2008) to incorporate collar random effects (e). For each observa-
tion i (i = 1, 2,…, 144) and collar c (c = 1, 2,…20 collars)
associated with i:

lLRfig ¼ LRbfig

þ EOfig
1

298:15� TOfmg
� 1

ðTfig þ 273:15Þ � TOfmg

 !

þ efcg
Eqn 3

where LRb is the natural log of Rb, the ‘base’ Rsoil at 25°C
(298.15 K). We use 25°C because the annually averaged soil tem-
perature across the two microhabitats was 25.1°C, and this is a
standard reference temperature against which to compare with
other studies (Cable et al., 2011). EO (Kelvin) is a temperature
sensitivity parameter that is somewhat analogous to an energy of
activation term, TO (Kelvin) is another temperature sensitivity
parameter, and T is soil temperature (°C; 0–10 cm). We allowed
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TO to vary by m to account for inherent differences in the
temperature sensitivity of Rsoil between microhabitats.

Importantly, we extended the original Lloyd & Taylor func-
tion by modeling LRb and EO as functions of antecedent and cur-
rent conditions similar to Cable et al. (2008). The model for LRb
incorporates the influence not only of environmental conditions
(SWC and temperature) but also of photosynthetic activity (Asat),
essentially linking above- and below-ground carbon dynamics
within a singular model of Rsoil. In fact, Asat is just a proxy for
many plant attributes – such as the general metabolic state of the
plant, the actual amount of fixed carbon, nitrogen status, etc. –
but here we use this measure of maximum carbon assimilation
potential to indicate peak capacity for each growth form, for each
phenological point in time. The model for LRb for observation i
associated with microhabitat m is:

LRbfig ¼ a1fmg þ a2fmgAntApred fd ;mg þ a3fmgAntSWCfd ;mgþ
a4fmgSWCfd ;mg þ a5fmgAntSWCfd ;mgSWCfd ;mg

Eqn 4

where AntApred is the antecedent leaf-level, predicted saturated
photosynthesis, which is linked to Apred in Eqn 2; and SWC,
AntApred SWC and AntSWC, a1 are current and antecedent soil
water contents, respectively. The a1 parameter represents the base
rate under average soil water content (i.e. at mean centered
SWC = 0 and AntSWC = 0) at a reference temperature of 25°C
and in the absence of above-ground carbon inputs (AntApred = 0).
The endogenous effect of AntApred is given by a2, and the exoge-
nous effects of AntSWC, SWC, and their interaction are cap-
tured by a3, a4, and a5, respectively. All a parameters vary by m
to allow for potential microhabitat differences in sensitivities to
each driver. We employ a model for EO{i} that is identical to
Eqn 4, but with its own set of parameters b1, b2, …, b5 instead
of a1, a2,…, a5.

Lloyd & Taylor (1994) suggest that EO and TO are relatively
conserved across many ecosystem types, so we used semi-infor-
mative normal priors for TO and the ‘base’ EO value (i.e. b1 = EO
at mean centered SWC = 0 and AntSWC = 0 and at
AntApred = 0). We chose normal priors for TO and b1, with the
prior means given by the Lloyd & Taylor estimates of TO and EO
(227.13 and 308.56 K, respectively), as described in Cable et al.
(2008, 2012). TO was also restricted between 1 and 285 K, where
285 K was just below the minimum value of T measured
throughout the study. We assigned standard, noninformative
priors to all remaining parameters (i.e. c, a, b, and all variance
terms).

Equations 1–4 describe our ‘final model’ which we compared
with three alternative formulations (the Asat model was the same
in all four models). The first, which we refer to as the ‘current
effects model’, modifies the models for LRb and EO by only
expressing these quantities as functions of current endogenous
and exogenous conditions (i.e. a3 = a5 = b3 = b5 = 0 and
AntApred{d,m} is replaced with Apred{d,m}, Eqn 4). Thus, Rsoil is
linked to the current soil water and current photosynthesis (i.e.
Apred on the day of the Rsoil measurement), and it is does not

depend on antecedent soil water. The second, which we refer to
as the ‘day random effects model’, builds from the current effects
model by including temporal random effects (c) such that Eqn 3
was modified to include the addition of c{t}, where t is the mea-
surement day index (t = 1, 2, …, 27). The third, which we refer
to as the ‘exogenous model’, retains the original Eqn 3, but it
assumes that LRb and EO are uncoupled from endogenous,
above-ground carbon gain (i.e. a2 = b2 = 0, Eqn 4). Comparison
of the four models allowed us to quantify: the amount of varia-
tion in Rsoil that is captured by temporal effects that do not pro-
vide direct insight into the underlying factors governing Rsoil
(compare the current effects model with the day random effects
model); how much of the variation captured by the temporal
random effects is explained by exogenous antecedent drivers
(compare the exogenous model with the day random effects
model); and how much is explained by endogenous and exoge-
nous antecedent drivers (compare the final model with the day
random effects model).

Quantifying the antecedent drivers

Historically, when incorporating antecedent conditions, one
predetermines the duration of the ‘antecedent period’ arbitrarily
(e.g. 10 d, 2 wk, etc.) and whether or not d/wk into the past
carry an equal or declining degree of influence. For example,
one may define antecedent soil water as the mean SWC over the
past 10 d (i.e. soil water on each day has equal influence). We
take a different approach, which allows the data on Rsoil to
inform not only the process parameters in Eqns 3 and 4, but
also the parameters describing the actual antecedent variables. In
our model for Rsoil, we work with SWC and predicted maxi-
mum photosynthesis (Apred) on a daily timescale, and we
defined their associated antecedent values as weighted averages
of their past daily values, where the weights are unknown quan-
tities.

Thus, we defined a stochastic model for the antecedent condi-
tions that are relevant to the mechanistic model for Rsoil. For vari-
able X (X = Apred or SWC), and for day of year d, collar c, and
microhabitat m associated with observation i in the Rsoil dataset,
the antecedent value of X is:

AntXfd ;mg ¼
XNdays

k¼0 or 1

wX fk ;mgXfd�k;cg Eqn 5

where k is day into the past (k = 0 (‘today’), 1 (‘yesterday’), 2,
…, Ndays). Note that the weight, wX, quantifies the relative
importance of variable X occurring k d ago for current Rsoil, and
we used different weights for Apred and SWC. For AntApred, we
summed from k = 0 to k =Ndays such that the current day’s Apred

value is included; for AntSWC, we summed from k = 1 to
k =Ndays, as the current SWC is directly incorporated into the
model for Rsoil via the LRb and EO models (see Eqn 4). For each
microhabitat, we assigned a noninformative Dirichlet before
their vector of weights, which forces each wX to be between 0
and 1 and for all weights to sum to 1 across the antecedent
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period of Ndays within each microhabitat type. Exploratory
analyses that varied the value for Ndays suggested that Ndays = 4
is appropriate in this study. If AntX has a significant effect on
Rsoil – that is, the corresponding a (or b) parameter in Eqn 4 is
significantly different from zero – then the wX values inform us
about the relative importance of SWC or Apred conditions expe-
rienced on different days into the past; notably high values of a
particular wX would indicate important lag times. We computed
the correlations between the posterior (Markov chain Monte
Carlo (MCMC)) samples for each pair of parameters. The pos-
terior results for the correlations between the covariate effects
(e.g. a or a values and b or b values) in the Rsoil and Asat model
are provided in the Supporting Information (Table S1)). These
results indicate that some of these effects are relatively highly
correlated (e.g. a[3] and a[4], b[3] and b[4], a[4] and b[4]), but
this correlation is accounted for within the Bayesian model, and
it did not cause issues with convergence of mixing of the
MCMC chains.

Model implementation and model comparison

The four Rsoil model formulations were implemented in the
Bayesian statistical software package OpenBUGS (Lunn et al.,
2009). For all models, we ran three parallel MCMC chains for
110 000 iterations; we discarded the first 10 000 (burn-in) sam-
ples and thinned every 50th iteration to reduce both storage
requirements and within-chain autocorrelation. This yielded an
independent sample of 6000 values for each parameter from the
joint posterior distribution (Brooks & Gelman, 1998; Gelman,
2003). We used the built-in Brooks–Gelman–Rubin diagnostic
tool to evaluate convergence of the chains to the posterior distri-
bution (Gelman, 2004). For each parameter of interest, we pres-
ent its posterior mean and central 95% credible interval (CI).
Regression model coefficients (e.g. c2–c4, a2–a5, b2–b 5; see
Eqns 1 and 4) whose 95% CI contains 0 are generally deemed
nonsignificant. This criterion that the CIs don’t contain 0 is
equivalent to a ‘classical two-sided’ test, whereas the Bayesian
P-values we report in are equivalent to a ‘one-sided’ test. Thus, in
the rare case where the 95% CI only slightly contains 0 (i.e. 0 is
very close to one of the interval end-points), the Bayesian P-value
is likely to indicate that this parameter is significantly different
from 0. In such cases, where the CI and P-value may not ‘agree
perfectly’, we utilize the P-value, as the Bayesian approach is gen-
erally more conservative in terms of revealing significant effects,
and such ‘marginal’ cases may still imply important biological
significance.

We used two different model indices to compare the four
aforementioned models of Rsoil. We conducted regressions of
observed vs predicted Rsoil (on the log scale) to visually and quan-
titatively evaluate model fit and bias, where the predicted values
are the posterior means for lLR in Eqn 3. We also computed the
deviance information criterion (DIC; Spiegelhalter et al., 2002)
for each model. DIC is a model comparison statistic that
accounts for model fit while also penalizing for model complex-
ity, which is represented as the effective number of parameter
(pD). In a nonhierarchical model, pD should be approximately

equal to the countable number of parameters, but it is often less
than the countable number in a hierarchical model. A lower DIC
indicates a better model, and a difference of 10 or more between
DIC values indicates strong support for the best model (Spiegel-
halter et al., 2002).

Results

Exogenous controls on leaf-level photosynthesis

In an attempt to better describe previously unexplained temporal
variation in Rsoil (Cable et al., 2008), we incorporated the ante-
cedent effects of light-saturated photosynthesis (Asat) and SWC
(AntSWC) to provide a mechanistic link between Rsoil and above-
and below-ground controls. Thus, three of the four Rsoil models
that we evaluated were linked to Asat, although only the final
model incorporated the effects of antecedent Asat. Independent of
the Rsoil model, the Asat model performed exceptionally well for
both mesquite and bunchgrass (r2 = 0.94 and 0.99, respectively;
Fig. 2), and measured and predicted Asat values were well within
range of those reported in the literature for these or similar spe-
cies (Wan & Sosebee, 1990; De Soyza et al., 1996; Potts et al.,
2008; Hamerlynck et al., 2010; Barron-Gafford et al., 2012,
2013). Given the covariance among the three parameters exam-
ined, we found that adding the singular term of maximum air
temperature (Tair max) did not have a significant effect on Asat in
mesquite (95% CI for c2 from Eqn 1 contained zero); however,
Tair max did have a significant positive influence on Asat in
bunchgrasses (Fig. 3a). Furthermore, increases in VPD (VPDmax)
were positively correlated with Asat rates in both species (c3 > 0;
see Eqn 1), but the influence was nearly five times greater in
bunchgrasses (Fig. 3b). Increases in SWC did not significantly
influence Asat in mesquite microhabitats (95% CI for c4, Eqn 1,
contained zero), but positively affected Asat in bunchgrass

Fig. 2 Comparison of observed vs predicted light-saturated photosynthesis
(Asat). Data are shown for two microhabitats (mesquite, triangles;
bunchgrass, circles) collected across 7 d spanning all seasonal periods;
predicted values are the posterior means for lAsat in Eqn 1. The diagonal
dotted line is the 1 : 1 line.
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microhabitats (c4 > 0), illustrating a greater sensitivity of photo-
synthesis to changes in shallow water availability within the
bunchgrass (Fig. 3c).

Exogenous and endogenous controls on Rsoil

The day random effects model fit the Rsoil data well for both
microhabitats (r2 = 0.94 for both mesquite and bunchgrass;
r2 = 0.99 when lumped), and observed vs predicted points fell
tightly around the 1 : 1 line (Fig. 4a). Much of this goodness-
of-fit, however, was the result of the explicit incorporation of
the temporal (c) random effects into Eqn 3. The current
effects model, which did not include the c effects, notably
reduced model fit and increased model bias (r2 = 0.55 and
0.65 for mesquite and bunchgrass, respectively, and points do
not consistently fall around the 1 : 1 line; Fig. 4b). That is,
the poorer performance of the current effects model is

attributed to greater variation among average predicted Rsoil
rates and substantial overestimation of low fluxes (bias).
Accounting for AntSWC within our exogenous model
increased goodness-of-fit by 19 and 13% for mesquite and
bunchgrass, respectively (Fig. 4c). Inclusion of AntApred and
AntSWC into the final model of Rsoil, however, resulted in a
more substantial increase in model fit relative to the current
effects model, for both mesquite (r2 = 0.89; 29% increase) and
bunchgrass (r2 = 0.89; 25% increase; Fig. 4d). This greatest
improvement in performance suggests that the final model is
capturing potential mechanisms that explain the majority of
the temporal random effects associated with the day random
effects model. The DIC, however, suggests that the random
effects model performed the best (lowest DIC; Table 1), but
this model also had the highest number of effective parameters
(pD; Table 1). Ultimately, the final model was the optimal
choice because of the balance between model performance
(second lowest DIC), the number of effective parameters
(second lowest pD), and the amount of mechanistic insight
provided (comparatively high).

Thus, we focus on the results from the final model to evaluate
the influence of antecedent factors. Antecedent drivers can affect
Rsoil by influencing the base rate (LRb, Eqns 3 and 4) and/or the
temperature sensitivity (EO, Eqn 3). We found that higher LRb
is correlated with higher AntApred in both microhabitats (Fig. 5a;
P < 0.0001 for both microhabitats, Table 2). Importantly, the
posterior mean for a2 was nearly fourfold higher in mesquite
than in bunchgrass microhabitats, indicating significantly greater
sensitivity of LRb to AntApred under mesquite (i.e. 95% CIs for
each a2 do not contain the posterior mean of the other micro-
habitat’s a2). AntSWC positively influenced LRb in bunchgrass
microhabitats (a3 > 0, Fig. 5b; P = 0.0018, Table 2), but current-
day SWC did not directly influence LRb (Fig. 5c; 95% CI for a4
contained zero for both microhabitats). Additionally, we
detected a significant negative interaction of current-day SWC
by AntSWC on LRb, such that the strongest positive effect of
AntSWC occurred when current conditions were relatively dry
(Fig. 5d; a5 < 0 for both microhabitats; P = 0.0092 and 0.0052
for mesquite and bunchgrass, respectively, Table 2). Thus, dur-
ing prolonged moist periods (i.e. past and current SWC are rela-
tively high), LRb is relatively insensitive to changes in water
availability.

We found that lower EO is also correlated with higher
AntApred in both microhabitats (Fig. 5e; P = 0.0007 and 0.0260
for mesquite and bunchgrass microhabitats, respectively;
Table 2). Changes in AntSWC positively influenced EO within
the mesquite (P = 0.0713) but not within bunchgrass microhab-
itats (P = 0.1903, Table 2; Fig. 5f). On the contrary, increases in
current SWC reduced EO in the bunchgrass microhabitat
(P = 0.0298), but had no effect in the mesquite microhabitat
(P = 0.1842, Table 2; Fig. 5g). There was a significant negative
interaction effect of current-day SWC by AntSWC for both mi-
crohabitats (Fig. 5h; P = 0.0022 and < 0.0001 for mesquite and
bunchgrass, respectively) such that the sensitivity of Rsoil to
changes in soil temperature was reduced when soil moisture had
been relatively constant and/or high. Conversely, EO increased

(a)

(b)

(c)

Fig. 3 The posterior means and 95% credible intervals (CIs) for the
parameters (effects) in the model for light-saturated photosynthesis
(Asat) (see Eqn 1). Results are shown for the effects associated with: (a)
air temperature (c2); (b) vapor pressure deficit (VPD; c3), and (c)
current soil water content effect (SWC; c4). Estimates are shown for
two microhabitats (mesquite, triangles; bunchgrass, circles); CIs that
overlap the dashed horizontal line at zero indicate the lack of an
effect.
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in response to increased moisture availability (i.e. increase in
current SWC) if past conditions were relatively dry, as would
occur immediately after a sizeable rain event that broke a dry
spell.

Characteristics of the antecedent endogenous and
exogenous drivers

The noninformative Dirichlet prior that we assigned to the
microhabitat-specific weight vectors (wX, Eqn 5) for AntApred

in the final model gave equal weight to each day over a 5 d
antecedent period (prior mean = 1/5 for each daily wX), with
relatively high uncertainty (i.e. wide 95% prior predictive
CIs; Fig. 6). The field data notably refined the estimates of
wX defining antecedent photosynthesis (AntApred) in the mes-
quite microhabitat; that is, the posterior means for each
daily wX generally differed from the prior mean, and the
posterior 95% CIs were much narrower than the prior CIs
(Fig. 6a). A clear lag response to Asat emerged such that Asat

rates 3 d before the Rsoil measurement were most important
in determining current-day Rsoil under mesquite (Fig. 6a).
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Fig. 4 Comparison of observed vs predicted natural log (loge) of soil respiration rates (Rsoil) from four different models for Rsoil: (a) the day random effects
model is based on the model described in Cable et al. (2008), which incorporated the effects of current soil temperature, current soil water content, spatial
(collar) and temporal (day of measurement) random effects, but also includes the effect of current photosynthesis (Apred); (b) the current effects model is
similar to the day random effects model but lacks the temporal random effects; (c) the exogenous model includes exogenous effects related to current and
antecedent previous soil moisture status (AntSWC) but excludes the endogenous effect of Asat; and (d) the final model includes antecedent exogenous and
endogenous factors, linking above-ground productivity and below-ground efflux by including AntApred and AntSWC effects. The predicted values are the
posterior means for lLR (mean of logeR) in Eqn 3. The gray and black lines are the regression lines for each microhabitat type; the diagonal dotted line is
the 1 : 1 line.

Table 1 Model comparison indices, including the deviance information
criterion (DIC), the number of effective parameters (pD, a component of
DIC), and coefficients of determination (r2) obtained from a traditional
regression of the observed vs predicted Rsoil values

Soil respiration model DIC pD

Observed vs predicted r2

Mesquite Bunchgrass

Day random effects model 118.9 35.3 0.939 0.935
Current effects model 323.5 26.2 0.686 0.709
Exogenous model 248.0 20.3 0.816 0.797
Final model 187.4 22.7 0.878 0.891
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Within the bunchgrass microhabitats, the posterior 95% CIs
were wider than those for mesquite, and the means for each
wX did not differ notably from the prior means for days 0
or 2–5. Still, a shorter, 1 d lag time is likely, indicating that
Asat rates the day before the Rsoil measurement were most
important in determining current-day Rsoil under bunchgrass-
es (Fig. 6b).

Similar analyses of the exogenous factors such as AntSWC
indicate that SWC conditions associated with the day before
the Rsoil measurement were most important in determining
current-day Rsoil within both microhabitats, although this 1 d
lag was more pronounced under bunchgrasses (Fig. 7a,b).

Within the bunchgrass microhabitat, the posterior means for
the AntSWC weights were lower than the prior means for
days 2–4, and the posterior 95% CIs were about two-thirds
narrower than the prior CIs within both microhabitats. Given
the aforementioned significant effects of current SWC, AntS-
WC, and their interaction, this indicates that the current
(SWC) and previous day’s soil moisture conditions (AntSWC
with high value of wX for k = 1; Eqn 5) are the most impor-
tant soil moisture-related variables for predicting Rsoil in both
microhabitats. Soil moisture patterns further into the past
(k > 1, Eqn 5) appear to be relatively unimportant for predict-
ing current Rsoil.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 5 Posterior means and 95% credible
intervals (CIs) for the parameters (effects) in
the model for the log-scale base rate (LRb

(a–d); Eqn 4) and the temperature sensitivity
(EO; same as Eqn 4, but with parameters
indicated by b values instead of a values)
(e–h) associated with the final model of Rsoil.
(a, e) The antecedent light-saturated
photosynthesis (AntApred) effect on LRb and
EO (a2 and b2, respectively); (b) the
antecedent soil water content (AntSWC)
effect (a3 and b3, respectively); (c) the
current-day soil water content (SWC) effect
(a4 and b4, respectively); and (d) the
AntSWC9 current SWC effect (a5 and b5,
respectively). Results are shown for two
microhabitats: mesquite, triangles;
bunchgrass, circles.
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Discussion

Given projected concomitant changes in regional climate and
vegetative cover (Seager et al., 2007), it is increasingly necessary
to improve predictive capacities of models that link environmen-
tally driven and biologically mediated processes, such as soil car-
bon cycling and ecosystem–atmosphere exchange dynamics
(Davidson et al., 2006). Here, we developed a simple model for
estimating soil respiration (Rsoil) across different microhabitat
types that provides an insight into the relative influence of endog-
enous (e.g. above-ground carbon dynamics via photosynthesis)
and exogenous (e.g. temperature and soil moisture) controls on

soil respiration, while also improving our understanding of their
antecedent influences. While this study was conducted within a
semiarid environment, it is important to keep in mind the gener-
ality of the drivers considered in this study (air temperature,
VPD, and SWC). Additionally, semiarid ecosystems make effec-
tive model systems for evaluating interactions that characterize
terrestrial ecosystem dynamics globally given: that 41% of the
earth’s terrestrial surface comprises drylands and that this number
is predicted to grow as a result of climate change (Feng & Fu,
2013); and that the majority of the terrestrial biosphere is water-
limited at some point during the year (Jenerette et al., 2012).

Table 2 Bayesian one-sided P-values indicating the significance or relative importance of each exogenous and endogenous variable included in the final
model; effects are ranked in order of significance (or importance) for each microhabitat within the base rate (LRb) and temperature sensitivity (EO) models

Log base rate (LRb) model Temperature sensitivity (EO) model

Microsite Effect Covariate P-value Effect Covariate P-value

Mesquite a2 AntApred < 0.0001 b2 AntApred 0.0007
a5 AntSWC9 SWC 0.0092 b5 AntSWC9 SWC 0.0022
a4 SWC 0.1195 b3 AntSWC 0.0713
a3 AntSWC 0.2237 b4 SWC 0.1842

Bunchgrass a2 AntApred < 0.0001 b5 AntSWC9 SWC < 0.0001
a3 AntSWC 0.0018 b2 AntApred 0.0260
a5 AntSWC9 SWC 0.0052 b4 SWC 0.0298
a4 SWC 0.3022 b3 AntSWC 0.1903

AntApred, antecedent leaf-level, predicted saturated photosynthesis; SWC, soil water content; AntSWC, antecedent SWC.

(a)

(b)

Fig. 6 Posterior means and 95% credible intervals (CIs) for the weights
(wX, Eqn 5) associated with the definition of antecedent light-saturated
photosynthesis (AntApred) within mesquite (a, triangles) and bunchgrass
(b, circles) microhabitats. The weights from the noninformative Dirichlet
prior (gray squares, with 95% CIs) are provided for comparison with the
posterior results.

(a)

(b)

Fig. 7 Posterior means and 95% credible intervals (CIs) for the weights
(wX, Eqn 5) associated with the calculation of antecedent soil water
content (AntSWC) within mesquite (a, triangles) and bunchgrass (b,
circles) microhabitats. The weights from the noninformative Dirichlet prior
(grey squares, with 95% CIs) are provided for comparison with the
posterior results.
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Application of this model examining above-ground–below-
ground linkages yielded four key results.

First, both endogenous and exogenous controls are critical
drivers of variation in Rsoil, but the relative importance of these
two types of driver depends on characteristics tied to vegetation
structure. For example, there was a positive effect of prior photo-
synthesis rates on base rates of Rsoil, and Rsoil was greatest during
periods of peak above-ground carbon uptake, regardless of micro-
habitat type (Fig. 5). The temperature sensitivity of Rsoil (EO),
however, was reduced by antecedent photosynthesis rates within
both microhabitats. This finding might suggest that in periods of
greater carbon input into the soils, limitations of temperature on
the energy of activation of Rsoil are less constraining. Alterna-
tively, because plant exudates are more labile than most other
substrates and EO varies with substrate, the negative relationship
between antecedent photosynthesis and EO could reflect the
higher amounts of labile soil carbon (sensu Davidson & Janssens,
2006). The temperature sensitivity of Rsoil was also reduced by
wetter current soil conditions in bunchgrass microhabitats, but
was not affected by current or antecedent soil moisture in mes-
quite microhabitats. Recent studies have also found a stronger
connectivity between Rsoil and patterns of soil moisture under
bunchgrasses than under mesquite shrubs, where rates of efflux
are less sensitive to wetting cycles (Barron-Gafford et al., 2011).
Moreover, every parameter in the Asat model was significantly dif-
ferent between microhabitat types (Fig. 3), such that the physio-
logical responses of the deep-rooted mesquites were only
minimally sensitive to changes in temperature and surface soil
moisture compared with the bunchgrasses. Thus, although the
plant-level physiological responses differ between these two spe-
cies (Fig. 3), the Rsoil responses among the microhabitat types are
less different (Fig. 5), probably because Rsoil represents a mixture
of autotrophic and heterotrophic contributions (Cable et al.,
2008), and the heterotrophic responses may be similar across
microhabitat types.

Secondly, the time-period over which endogenous drivers are
most important for Rsoil – that is, the antecedent effect of Asat – is
tied to vegetative structure and composition (Fig. 6). Under
bunchgrasses, we found weak evidence for single-day lag in the
time between the plant carbon uptake and the associated soil
microhabitat Rsoil. Conversely, in mesquite microhabitats, we
detected a more significant and longer lag-period, such that pho-
tosynthesis rates 3 d previously were the most influential in driv-
ing current-day rates of Rsoil (Fig. 6a). This lag period aligns with
the expected amount of time that would elapse between leaf-level
CO2 assimilation by shrubs, transport of the photosynthate prod-
ucts to the roots, and subsequent efflux of the metabolized prod-
ucts from nearby soils. For example, similar carbon transport lag
mtimes in shrubs and trees have been demonstrated based on
eddy covariance data (Tang et al., 2005), isotopic labeling tech-
niques (Carbone & Trumbore, 2007), estimates of stomatal con-
ductance and photosynthetic carbon isotope discrimination
(Bowling et al., 2002), substrate supply and Rsoil transfer models
throughout canopy expansion (P. Y. Oikawa et al., unpublished)
and wavelet analysis of the synchronicity of canopy photosynthe-
sis and Rsoil fluxes (Vargas et al., 2011).

Thirdly, the importance of antecedent exogenous drivers and
the time-period over which they influence Rsoil are also tied to
vegetative structure and composition (Fig. 7). Differential root-
ing behavior is, again, likely to underlie dissimilarities in the
influence of exogenous environmental controls, such as soil water
effects on Rsoil. Deep-rooted shrubs such as mesquite are able to
access subsurface water at depths beyond the reach of the more
shallow-rooted bunchgrasses (De Deyn et al., 2008; Scott et al.,
2006; Williams et al., 2006). Thus, bunchgrasses are more reliant
on shallow soil water, which reflects recent precipitation inputs,
yielding a relatively short antecedent period of influence. Further-
more, patterns of root exudation are driven by above- and below-
ground plant activity associated with photosynthesis and nutrient
uptake, respectively (Bardgett et al., 2005). Given that the phe-
nology of productivity by the deep-rooted shrubs is compara-
tively less coupled to precipitation (Scott et al., 2006), so too are
patterns of Rsoil within these microhabitats. These findings
underscore how a transformation in ecosystem structure (e.g.
woody plant expansion) across semiarid regions will probably
lead to a change in their functioning in terms of processes impor-
tant to climate feedbacks, such as the magnitude and timing of
ecosystem carbon fluxes (Goodale & Davidson, 2002).

Finally, in order to forecast ecosystem carbon balance under
current and future climate regimes, we need a reliable means of
estimating the dominant carbon fluxes, and our modeling
approach highlights important components that should be con-
sidered. Recent models have been fairly successful at capturing
the variability in observed Rsoil rates, especially in semiarid, pulse-
driven systems (Cable et al., 2008, 2009, 2012; Chatterjee &
Jenerette, 2011; Lellei-Kov�acs et al., 2011). Some of these
improvements have stemmed from a better quantification of
microhabitat-specific sensitivities to abiotic drivers or the relative
importance of moisture at different depths within the soil profile.
However, a notable amount of variation in Rsoil has been attrib-
uted to random, unexplainable temporal and/or spatial effects
(e.g. Cable et al., 2008). We showed that the inclusion of ante-
cedent photosynthesis and soil water effects into a model of Rsoil
greatly improved model performance, and these antecedent
effects accounted for most of the variation previously captured by
the temporal random effects. The importance of incorporating
endogenous influences into models of Rsoil is not surprising, given
that several recent studies have highlighted the potential impor-
tance of photosynthetic inputs for understanding the magnitude
of Rsoil (Tang et al., 2005; Kuzyakov & Gavrichkova, 2010;
Mencuccini & Holtta, 2010; Vargas et al., 2011).

As noted by Davidson et al. (2006) and Gaumont-Guay et al.
(2006), we need to move beyond simple correlations between
Rsoil and temperature to better quantify the primary driving
effects of temperature, soil water, and carbon substrate supply on
Rsoil. Given that we now have > 500 eddy covariance sites world-
wide recording environmental forcing variables (http://daac.ornl.
gov/FLUXNET/fluxnet.shtml) and that the regional climate
modeling community is prepared to integrate growth-form and
spatially explicit models of Rsoil (Collins et al., 2008; Shen et al.,
2008; Zhang et al., 2009), we are poised to make significant
advances in forecasting soil and ecosystem carbon balance
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through mechanistic models of above-ground–below-ground
linkages (Luo et al., 2011). In this regard, this work illustrates the
importance of the inclusion of a substrate supply-like term (ante-
cedent photosynthesis) within a simple model of Rsoil that
involves important environmental features, thereby improving
soil CO2 efflux estimates for semiarid systems. Such integration
of biological and physical features in developing predictive capac-
ity in ecology has been an important grand challenge.
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