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ABSTRACT

Lane, L.J. and Woolhiser, D.A., 1977. Simplifications of watershed geometry affecting

simulation of surface runoff. J. Hydrol., 35: 173—190.

In formulating the equations describing the flow of water on the surface of a watershed,

geometric simplifications must be made. A geometric simplification is the substitution of

a simple geometry for a more complex one. The problem is to examine techniques for and

consequences of such simplifications, and thereby develop objective procedures for

geometric simplification of complex watersheds.

Watershed geometry is represented by a series of planes and channels in cascade. When

overland flow and open-channel flow in the cascade are described by the kinematic wave

equations, the resulting mathematical model is called the kinematic cascade model. Planes

are fitted to coordinate data from topographic maps by a least-squares procedure. Resid

uals of this fit form a geometric goodness-of-fit statistic as the improvement over using the

mean elevation. Channel elements are determined, using Gray's method, as the slope of

the hypotenuse of a right triangle with the same area as that under the observed stream

profile. The ratio of the altitude of this right triangle to the total relief of a stream is the

index of concavity, a channel goodness-of-fit statistic. An overall goodness-of-fit statistic

is the drainage density ratio, the ratio of drainage density in the cascade of planes and

channels to drainage density of the watershed.

The mean value of a hydrograph goodness-of-fit statistic, as the improvement over using

the mean discharge, increases as the geometric goodness-of-fit statistic increases but also

decreases as the drainage density increases. A combined goodness-of-fit statistic, the product

of the drainage density ratio and the geometric goodness-of-fit statistic, is related to the

degree of distortion in optimal-hydraulic roughness parameters. Distortions in watershed

geometry result in optimal roughness parameters smaller than the corresponding empirically

derived values for simple watersheds where less distortion is involved.
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Service, Western Region, in cooperation with the Colorado State University Experiment

Station.

*' Hydrologist and Supervisory Research Hydraulic Engineer, Southwest Watershed

Research Center, 442 East Seventh Street, Tucson, Arizona, and Engineering Research

Center, CSU Foothills, Campus, Fort Collins, Colorado, respectively.
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Given rainfall, runoff and topographic data for a small watershed, it is possible to define
the simplest kinematic cascade geometry which when used in simulation will, on the aver
age, preserve selected hydrograph characteristics to a given degree of accuracy.

INTRODUCTION

The problem

As used here, the term watershed means an area above a specified point on

a stream enclosed by a perimeter. The watershed perimeter defines an area

where surface runoff will move into the stream or its tributaries above the

specified point. Thus the term watershed connotes a physical entity for which

continuity statements can be made. If attention is limited to stream channels

and they are conceptualized as single lines, then the resulting line diagram is

called a channel network. A simple concept of the surface of a watershed is

that it consists of the channel network and the inter-channel areas of overland

flow within the watershed perimeter. Flow from this surface is called surface
runoff.

In formulating the equations describing the flow of water on a watershed

surface, geometric simplifications must be made. Geometric simplification is

the substitution of a rather simple geometry for a more complex one. The
problem is to examine techniques for, and consequences of, such simplifica

tions, and thereby develop objective procedures for geometric simplification
of complex watersheds.

Background

Kinematic wave theory via the kinematic cascade model discussed below is

the basic tool used here for surface runoff simulation. Under conditions
where the momentum equation can be approximated to a good degree by

maintaining only terms expressing bottom slope and friction slope, the flow

is called kinematic. Under these conditions, local depth and discharge on a
plane have a simple functional relation:

Q = ahn (1)

where

Q = local discharge

h = local depth

a = coefficient incorporating slope and roughness

n = exponent reflecting flow type, namely, laminar or turbulent

These definitions are for flow over a hydraulically smooth plane. However,

the same form can be used for irregular surfaces where the mean flux per

unit width is proportional to the storage in an incremental area. An early

reference (Lighthill and Whitham, 1955) gives the theory of kinematic waves
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(waves under conditions discussed above). From this theoretical treatment,

the next step is to sources developing the kinematic cascade as a hydrologic

model.

Henderson and Wooding (1964) applied the theory to flow over a plane

and compared their results to data with a good reproduction of the observa

tions. The next step, extending the theory to a watershed model, was made

by Wooding [see Wooding (1965a, b, 1966)] who stated the theoryi discussed

numerical solutions and compared his results with observed runoff data. This

extension was an important step in developing a general watershed model

based upon kinematic flow. A complex watershed was modeled as two sym

metric lateral planes contributing to a channel bisecting the area. Schematical

ly, the model could be likened to an open book with the channel in the center

so that there is a lateral slope for the planes but also a down channel slope for

the channel and planes. This model will be referred to as Wooding's model.

The essential step from Wooding's model to the kinematic cascade model

was made by Brakensiek (1967). This step is fundamental in that instead of

a single plane discharging into a channel — a lumped nonlinear model —

Brakensiek broke the lateral flow portion into a sequential series (cascade) of

planes. With this cascade formulation an obvious extension is to let each plane

have its own characteristics resulting in a distributed model. Kibler and Wool-

hiser (1970, p. vii) defined a kinematic cascade as follows:

A kinematic cascade is defined as a sequence of n discrete overland flow planes or

channel segments in which the kinematic wave equations are used to describe the unsteady

flow. Bach plane or channel is characterized by a length, l^, width, wk, and a roughness-

slope factor, afc.

Thus, the kinematic cascade is a distributed (in that each element may

have different characteristics, including rainfall excess) model with lumped

parameters in the subelements. The model is a nonlinear model since values

for n in eq.l are generally not equal to 1. For examples of recent applications

in urban and rural agricultural watersheds, see Harley et al. (1970) and Singh

(1974).

Scope and objectives

The emphasis of the work reported here is on rainfall excess—surface runoff

relationships on small natural or cultivated agricultural watersheds with drain

age areas of less than a few square kilometers. The problems in assuming

uniform input patterns are recognized but by considering only small water

sheds, these problems are presumably minimized.

Our principal objective was to develop objective procedures for geometric

simplification of small watersheds and specifically to relate statistics of the

simplified geometry to watershed and hydrograph characteristics.
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BASIC MODELS AND PROCEDURES

Hobson 's procedure as modified

A topographic map, among other things, defines a watershed perimeter
and channel network. Moreover, each point on and within the perimeter is
defined by coordinates (x,y,z). Similar to Hobson's (1967) notation, but in
correct matrix form, e, is an elevation point corresponding to (u,-,y,) as the

associated x and y coordinates. The coefficients of the least-squares-fitted
plane are b,-. With this notation:

E = [UV)B

defines the elevation vector where:

B = [uvy>E

., with

b2

Pk

as the coefficient vector:

E =

as the e

[UV) =

Ze,

levatio

~1

1

V2i

'ui

n vector, ar

*i 2 t/j .

(2)

(3)

(4)

(5)

With this notation, a computed elevation value is:

(6)

(7)

Deviations from observed elevation values are of the form z; - z,- where z,

is an observed elevation, and z,- is given by eq.7. If a mean elevation is com
puted as:

N

(8)

then the sum of squares about this mean is:
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N

S\ = £ <*i - W (9)
i-1

where N is the number of data points. The sum of squared deviations or

residuals is:

N

where 2/ is computed using eq.7. A geometric goodness-of-fit statistic (Lane,

1975) is:

R\ = (S? - SD/S] (11)

as the relative improvement, by fitting the plane, over using the mean eleva

tion.

The procedure for fitting a cascade of planes and channels to watershed

data from topographic maps is described below. First, coordinate data over

the watershed area are selected so that each point represents nearly the same

area within the perimeter. A single plane fit to the coordinate data is the sim

plest "cascade". The next cascade would be one channel and two lateral

planes — Wooding's model. More complex models are developed by including

successively more planes and channels in the cascade. Throughout the proce

dure, certain watershed properties are preserved. Each of the successively

more complex models has the same total drainage area. If the length of the

main channel, Lc, is also preserved, then the area and length specify the

width for a single plane. For Wooding's model, the main channel length is

set equal to Lc and, thus, the width of the lateral planes is specified. As the

complexity of the kinematic cascade increases; the freedom in choosing the

arrangement and size of the elements also increases.

Gray's procedure as modified

Gray (1961) defined slope of the main stream, Sc, as the slope of a line

drawn along the measured profile which has the same area under it as is

under the observed profile. This slope is the slope of the hypotenuse of a right

triangle with the same area, A, and length, Lc, as the observed profile. With

respect to the triangle, the area is:

A=±Lch (12)

and the siope is:

Sc=h/Lc (13)

If eq.12 is solved for h and this is substituted into eq.13, then:

Sc = 2A/LI (14)
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as the equivalent channel slope. With respect to the observed stream profile:

A= f (Lc~ x)dy (15)
y = o

where x is distance along the channel profile, y is elevation above the assumed

base level, Hc is the elevation of the highest point in the main channel above

the assumed base level, and if the slope is S(x), then:

dy = S(x)dx (16)

in eq.15.

With this value of dy, eq.15 becomes:

A = J (Lc - x)S(x)dx (17)
o

and eq.14 becomes:

Sc = 2 / i-±—' S(x)dx (18)
o Lc

where (Lc - xj)L\ can be considered a weighting factor. For example, this

factor is zero at x = Lc and maximum at x = 0. Therefore, Gray's method

produces a channel slope weighted by distance from the headwaters of the

main stream. The highest weight is given to the slope at the outlet.

If Hc is the total relief of the stream and h is the altitude of the above

right triangle, then their ratio, h/Hc, can be used as an overall index of stream

concavity so that a value less than 1 (the usual case) corresponds to an overall

| concave profile, while a value greater than 1 indicates an overall convex pro
file. This index is used as a measure of how well the channel slope is repre
sented by a straight line.

Drainage density ratio

Assume that a given watershed with drainage density, D&, is modeled as a

simplified cascade of planes and channels with drainage density, d<\. The ratio

dd/^d >s between 0 and 1 and is a measure of how well the channel network
is modeled with respect to total length. This ratio and the index of concavity

provide measures of the goodness-of-fit of the model's channels with respect

to the linear dimensions of the channels in the watershed (prototype).

Kinematic cascade model

In kinematic wave theory the continuity equation is:
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with the stage—discharge equation defined in eq.l as:

Q = ah" (20)

where

h = local depth of flow

u = local mean velocity

t = time

x = distance in direction of flow

q = lateral inflow

Q = discharge rate

a = coefficient

n = exponent (3.0 for laminar flow and 1.5 for turbulent flow)

The kinematic cascade model consists of the above equations and boundary

conditions appropriate for the cascade of planes and channels. Kibler and

Woolhiser (1970) presented a finite-difference method of solution known as

the single-step Lax-Wendroff method. This method from Houghton and

Kasahara (1968) was compared with two other finite-difference schemes by

Kibler and Woolhiser (1970). Briefly, the Lax-Wendroff scheme is second

order and was found to produce less numerical distortion in peak discharge

rates. The basic tool in this study is a general program for the kinematic

cascade using this method. As programmed by Woolhiser, channel flow is

turbulent and assumes the Chezy relationship. Flow over the planes begins as

laminar flow with a transition to turbulent flow if a transitional Reynolds

number is reached.

The coefficient a incorporates slope and roughness. The Darcy-Weisbach

friction factor is f, so that:

(21)

for laminar flow, and:

f=8g/C* (22)

for turbulent flow where:

/ = Darcy-Weisbach friction factor

K = roughness coefficient

Re = Reynolds number

g = gravity constant

C = Chezy C

To match friction factors as given by eqs.21 and 22 at the transition from

laminar to turbulent flow, it must be that:

i (23)
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where Rc is the transitional Reynolds number. Thus, the roughness is de
scribed by the coefficient, K, and a transition number, Rc. With these rela
tions the coefficient, a, is:

a = 8gS/Ki> (24)

for laminar flow, and:

a = Cv/5 (25)

for turbulent flow, where C is given by eq.23,5 is the bed slope, and v is the
kinematic viscosity.

For open-channel flow any of several handbooks (e.g., King and Brater,
1963; Barnes, 1967) can be used to estimate Chezy coefficients directly or
from tabular values of Manning's n. Roughness coefficients for overland flow
are presented in a table given by Woolhiser (1974) as a compendium of exper
imental data derived from a literature review. The same data are presented

c graphically by Lane (1975).

Summary of modeling procedure

The basic modeling procedure used here consists of a topographic analysis
section and a hydrologic analysis section. The topographic analysis consists
of: (1) determining kinematic cascade geometry; (2) calculating topographic
goodness-of-fit statistics; and (3) making initial estimates of roughness coef
ficients. The hydrologic analysis consists of: (1) calculating infiltration and
rainfall excess for given rainfall and runoff data; (2) solving the kinematic
wave equations for the kinematic cascade producing simulated runoff
hydrographs and optimum values for the roughness coefficients; and (3)
calculating hydrograph goodness-of-fit statistics. These procedures are sum
marized in a block diagram as shown in Fig.l. Input to the finite-difference
program is the kinematic cascade geometry, initial roughness coefficients,
estimated rainfall excess, and observed runoff data. Output from the finite-
difference program consists of simulated runoff hydrographs, optimal rough
ness coefficients, and a hydrograph goodness-of-fit statistic.

If the mean discharge from an observed hydrograph is q then:

m

«aS (Qi)/m (26)

where q{ are observed hydrograph ordinates and m is the number of ordinates.
The sum of squares about the mean discharge is then:

/ = i

(27)

If the simulated hydrograph ordinates are §,- then the sum of squared errors is:
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Fig.l. Block diagram summarizing the modeling procedure.

m

{Qi ~ Qi)2 (28)

for the same number of ordinates. The hydrograph goodness-of-fit statistic is

then:
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(29)

as the degree of improvement, by fitting the optimized hydrograph, over

using the mean discharge.

ANALYSIS AND RESULTS

Influence ofgeometric simplifications

Geometric simplification is the substitution of a simple geometry for a

more complex one. A watershed characteristic is preserved if its value remains

unchanged in the simplified geometry. Otherwise, the characteristic is distort

ed as represented in the model. Watershed area, main channel length, and

main channel equivalent slope are generally preserved, while stream order,

drainage density, other channel characteristics, and hydraulic roughness

coefficients are usually distorted. The degree of distortion for most other

characteristics falls between these extremes.

The slope shape of overland-flow surfaces affects the magnitude and time

of occurrence of peak discharge of the overland-flow hydrograph. Overton

(1971) considered the influence of slope shape upon overland flow. However,

Overton considered steady-state conditions so that peak discharge was not a

part of his analysis. He concluded that slope shape has little effect upon his

lag or hydrologic response time which is related to equilibrium time. How

ever, minimum time differences will be at equilibrium so that these results are

as expected: for this reason, data from the Pawnee watersheds in Colorado,

(cf. Smith and Striffler, 1969) were examined to determine the influence of

slope shape upon overland flow from natural watersheds. These watersheds

do not have well-defined channels. A calibrated kinematic cascade model was

used to simulate runoff from concave and convex watersheds, each with a

drainage area of 0.5 ha and similar in most other respects. The simulation

results suggested differences in time to peak of the hydrographs of about 20%

with only about 5% difference in peak discharge. Mid-watershed slope profiles

produced an index of concavity of 0.76 for the concave watershed and 1.09

for the convex watershed. Under these conditions, slope-shape effects on

overland flow may be significant with respect to time to peak but are proba

bly not significant with respect to peak discharge.

Usually downstream channel slope is distorted in assuming a uniform slope

when the channel slope is actually concave. Effects of such distortions include

underestimated time to peak of the routed hydrograph and overestimated

peak discharge. The magnitude of errors in routed peak discharge are related

to the index of concavity. Finally, the magnitude of the errors is less when

an equivalent (Gray's) slope is used than when slope is estimated as the total

relief over the total channel length (Lane, 1975).

Drainage density is a single number representing many complex interactions
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of factors affecting surface runoff. For example, if overland flow is assumed to

be at least partially laminar depending upon the length of flow, then drainage

density is related to the relative proportion of laminar flow and turbulent flow

as it represents the mean length of overland flow. Analysis of experimental

data (Lane, 1975; Lane and Parker, 1975; Parker, 1975) suggested that lag

time (as the first moment of an instantaneous unit hydrograph) was related

to drainage density. Drainage density is map-scale dependent, but for a given

map its determination is repeatable. When other factors are held constant,

mean lag time decreases as drainage density increases. Gross underestimation

of drainage density could result in overestimating the lag time and degree of

nonlinearity and underestimating peak discharge. Suppose for the moment

that lag time and peak discharge are fitted in an optimization procedure but

that drainage density is underestimated. A likely result is underestimation of

hydraulic roughness or a similar compensating error in another factor.

The effects of distorting slope shape in overland and open-channel flow

and of distorting drainage density are significant modifications of the surface

runoff hydrograph. Quantifying the hydrologic effects of these distortions

resulting from simplifications assumed in mathematical modeling is difficult

due to the complexity of the problem. However, goodness-of-fit statistics

have been proposed to quantify the degree of distortion and its effect upon

surface runoff hydrographs.

Relation between goodness-of-fit statistics

The first three steps in the modeling procedure described in Fig.l are

illustrated in Fig.2. First, a given watershed produces an observed hydrograph

as shown in the left-hand part of this figure. Second, a single plane is fit to

topographic data (x,y,z coordinates) producing R\ as a geometric goodness-

of-fit statistic. The equations of overland flow are solved for the given rainfall

input producing the fitted hydrograph as the dashed line in the central portion

of Fig.2. From the observed (q) and fitted (q) hydrographs a goodness-of-fit

statistic, Rq, is computed. Third, the procedure is repeated for two planes

and one channel (Wooding model) as shown on the right in Fig.2. The Wooding

model also produces two other goodness-of-fit statistics; 7C, the index of con

cavity, and 1^, the drainage density ratio.

The finite-difference program determines optimal roughness values for the

planes and channels separately. The procedure is to find optimal roughness

values for K on the planes given a Chezy C in the channels. The procedure is

repeated over a range of channel parameters to find the best set of roughness

coefficients. Values of the objective function are shown in Fig.3. Rainfall

excess is estimated using the Philip (1957) equation:

at) = A+$Srt (30)

where f(t) is infiltration rate, t is time, and A and S are parameters. This infil

tration equation obviously represents a simplified approach. However, it is a
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(R,Z)

Fig.2. Schematic representation of a watershed, simplified models, and associated goodness-
of-fit statistics.

simple equation and the procedure is repeatable which is all that was intended.
Data used in this example are from watershed W-C at Riesel, Texas (USDA,
1963). The upper part of Fig.3 shows the objective function (eq.28) and
associated optimal values of K for each of four values of C in the channel.

The lower part of Fig.3 is a plot of channel C vs. plane K for this example.
Observed and fitted hydrographs for the event of 6/10/41 on watershed

W-C Riesel, Texas, are shown in Fig.4. The hydrograph labeled (0) is the
observed surface runoff resulting from the rainfall pattern shown. The curve
labeled (/) is the best-fit hydrograph for a single plane with R% = 0.78. The
curve labeled (2) is the best-fit hydrograph for the Wooding model with
R% = 0.95.

Data from watershed W-C (234 ha) at Riesel, Texas, and watershed 2-H
(1.38 ha) at Hastings, Nebraska, were obtained from USDA Miscellaneous
Publications. Data from the 0.012 ha Drainage Evolution Research Facility
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Fig.3. Illustration of procedure for selection of optimal Chezy C in the Wooding model,

W-C, Riesel, Texas. Event of 6/10/41.

(DERF) at Colorado State University were obtained from R.S. Parker (see

Parker, 1975). Data from 25 rainfall runoff events on four watersheds were

analyzed as described previously, specifically as summarized in Fig.2. Rela

tions between geometric and mean hydrograph goodness-of-fit statistics are

shown in Fig.5. The left most points in Fig.5 are for a single plane and the

right most points are for Wooding's model. A third geometry, as discussed

later, is also shown for watershed W-C. Values of drainage density (in ft./ft.2
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Fig.4. Observed and fitted hydrography for watershed W-C, Riesel, Texas. Event of 6/10/41.

and m/m2) are given below the watershed identification in Fig.5. The geomet
ric goodness-of-fit statistic is a valuable measure of how well the watershed

topography is represented in a model, but it must be interpreted -with respect

to drainage density.

Data from the four very different watersheds described above produced

optimal roughness coefficients (K values) for a single plane and the Wooding

model as illustrated in Fig.5. These optimal K values were normalized by

tabular values of Ko corresponding with surface descriptions and laboratory

flume studies, as described and tabulated by Woolhiser (1974). A combined

goodness-of-fit statistic as the product of I&, the drainage density ratio, and

■Rp, the geometric goodness-of-fit statistic, was then related to the normalized
roughness coefficients. The statistic I& i?p is assumed zero for a single plane

with an upper limit of 1.0 for perfect geometric correspondence. Data from
the four watersheds are shown as the circled points in Fig.6.

Watershed SW-17 is a 1.21-ha watershed at Riesel, Texas (see USDA, 1963);

watershed LH-6 is a 0.43-ha watershed near Tombstone, Arizona (see Renard,
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1970), and the Pawnee watersheds do not have well-defined channel systems.

A more complex model for W-C consists of two channel segments in cascade

and four planes. The geometry for LH-6 consists of nine planes and three

channels. Data for these two watersheds are shown as the plus signs in Fig.6.

Data for SW-17 and the two Pawnee watersheds are shown as the arrows in

Fig.6. The two test cases (W-C and LH-6) agree with the least-squares line

shown in Fig.6, and K/Ko values for SW-17 and the Pawnee watersheds define

a range of about 0.25. There are no /di?£ values for SW-17 and the Pawnee

watersheds so that their K/Ko ratios are shown at the right of Fig.6.

The major difficulty with data as presented in Fig.6 is the subjective nature

of the a-priori roughness parameters. For this reason, the equation relating

K/Ko and /d-Rp represents a sample and thus may be unique. However, opti

mal roughness parameter estimates will likely increase as the geometric distor

tions in simplified models decrease.

A second cautionary note is with respect to the selection of geometric

properties to be preserved in modeling a watershed. The length of the main

channel, Lc, is preserved here. However, other length measures, such as the

mean length of overland flow, Lo, could be chosen. Limited experience

suggests that for a single plane the optimal length (with respect to the hydro-



188

100

0.75

O.50

O.25

+ w-c

-SW-I7

• PAWNEE

0.75 1.00

Fig.6. Relation between combined goodness-of-fit statistic and normalized roughness

coefficient.

graph goodness-to-fit statistic) may be somewhere between Lo and Lc. The

choice of characteristics to preserve depends upon the modeling objectives

SUMMARY AND CONCLUSION

Summary

In formulating the equations describing the flow of water on the surface

of a watershed, geometric simplifications must be made. Watershed geometry

is represented by a series of planes and channels in cascade. When overland

flow and open-channel flow in the cascade are described by the kinematic

wave equations, the resulting mathematical model is called the kinematic

cascade model. Statistics of the simplified geometry are related to statistics

of the simulated runoff hydrographs and to watershed characteristics.

Conclusion

Given rainfall, runoff and topographic data for a small watershed, it is

possible to define the simplest kinematic cascade geometry which when

used in simulation will, on the average, preserve the selected hydrograph

characteristics to a given degree of accuracy.
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