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Abstract
Scientists with the Agricultural Research Service (AHS) and

various government agencies and private institutions have

provided a great deal offundamental information relating

spectral reflectance and thermal emittance properties of soils

and crops to their agronomic and biophysical characteristics.

This knowledge has facilitated the development and use of

various remote sensing methods for non-destructive monitor

ing ofplant growth and development and for the detection of

many environmental stresses which limit plant productivity.

Coupled with rapid advances in computing and position-

locating technologies, remote sensing from ground-, air-, and

space-based platforms is now capable of providing detailed

spatial and temporal information on plant response to their

local environment that is needed for site specific agricultural

management approaches. This manuscript, which empha

sizes contributions by ARS researchers, reviews the biophysi

cal basis of remote sensing; examines approaches that have

been developed, refined, and tested for management of

water, nutrients, and pests in agricultural crops; and as

sesses the role of remote sensing in yield prediction. It con

cludes with a discussion of challenges facing remote sens

ing in the future.

Introduction
Agricultural production strategies have changed dramati

cally over the past decade. Many of these changes have

been driven by economic decisions to reduce inputs and
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maximize profits and by environmental guidelines mandat

ing more efficient and safer use of agricultural chemicals.

However, growers now have a heightened sensitivity to

concerns over the quality, nutritional value, and safety of

agricultural products. They are selecting cultivars and ad

justing planting dates to accommodate anticipated patterns

in weather, e.g., El Nino or La Nina events (Jones et al.,

2000). They are also relying on biotechnological innova

tions for suppressing pests, e.g., insect protected (Bt) and

Roundup® ready crops (Monsanto Company, 2003). The

possibility for selling carbon credits to industry is breath

ing new life into on-farm conservation tillage practices that

enhance carbon sequestration (Robert, 2001).

Perhaps the most significant change in agriculture dur

ing the past ten years is the shift towards precision, or site-

specific, crop management (National Research Council,

1997). Growers have long recognized within-field variabil

ity in potential productivity. Now, at the beginning of the

21st Century, they are seeking new ways to exploit that

variability. In the process, they are discovering they need

more information on soil and plant conditions than was re

quired a decade ago. Not only does this information need

to be accurate and consistent across their farm and from

year to year, it musl also be available at temporal and spa

tial scales that match rapidly evolving capabilities to vary

cultural procedures, irrigations, and agrochemical inputs.

A very large body of research spanning almost four

decades has demonstrated that much of this required in

formation is available remotely, via aircraft- and satellite-

based sensor systems. When combined with remarkable

advances in Global Positioning System (GPS) receivers, mi

crocomputers, geographic information systems (GIS), yield

monitors, and enhanced crop simulation models, remote

sensing technology has the potential to transform the ways

that growers manage their lands and implement precision

farming techniques.

The objective of this paper is to review progress that

has been made in remote sensing applications for crop

management and, in particular, highlight the role that the

USDA and its primary research agency, the Agricultural Re

search Service (ARS), has had in the movement. Of course,

these advances have not been a singular effort by ARS

(Pinter et al., 2003; p. 615 this issue). They have resulted

from long-standing cooperation among a number of differ

ent agencies and institutions, all in pursuit of expanding

remote sensing's role in providing information for crop

management. We will begin with some fundamental rela

tionships between the electromagnetic spectrum and basic

agronomic conditions and biophysical plant processes,

and then present specific examples of remote sensing
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applications in irrigation scheduling, nutrient management,
pest control, and yield prediction. We will conclude with a

discussion of gaps in our knowledge and an assessment of
challenges that remain for the future.

Biophysical Basis for Agricultural Remote Sensing
Modern applications of remote sensing to agriculture

have their foundation in pioneering work by ARS scien

tists William Allen, Harold Gausman, and Joseph Woolley

who provided much of the basic theory relating morpho

logical characteristics of crop plants to their optical prop

erties (Allen et al., 1969; Gausman et al., 1969; Woolley,

1971; Allen et al., 1973; Gausman, 1973; Gausman, 1974;

Gausman et al., 1974; Gausman, 1977). These scientists

and their teams also published many high resolution spec

tral signatures for natural and cultivated species, identify

ing spectral features associated with normal plant growth

conditions and those caused by nutrient deficiency, pests,

and abiotic stresses (Gausman and Allen, 1973; Gausman

et al., 1975a; Gausman et al., 1976; Gausman et al., 1978;

Gausman et ai., 1981; Peynado et al., 1980).

Spectral Reflectance Properties of leaves

Green plant leaves typically display very low reflectance

and transmittance in visible regions of the spectrum (i.e.,

400 to 700 nm) due to strong absorptance by photosynthetic

and accessory plant pigments (Chappelle et al., 1992). By

contrast, reflectance and transmittance are both usually high

in the near-infrared regions (NIR, 700 to 1300 nm) because

there is very little absorptance by subcollular particles or

pigments and also because there is considerable scattering

at mesophyll cell wall interfaces (Gausman, 1974; Gausman,

1977; Slaton et al., 2001). This sharp dissimilarity in re

flectance properties between visible and NIR wavelengths

underpins a majority of remote approaches for monitoring

and managing crop and natural vegetation communities

(Knipling, 1970; Bauer, 1975).

Plant stress and/or normal end-of-season senescence

typically result in lower chlorophyll concentrations that

allow expression of accessory leaf pigments such as caro

tenes and xanthophylls. This has the effect of broadening

the green reflectance peak (normally located near 550 nm)

towards longer wavelengths, increasing visible reflectance

(Adams et al., 1999), and causing the tissues to appear

chlorotic. At the same time, NIR reflectance decreases, al

beit proportionately less than the visible increases. With

increasing stress, the abrupt transition or "red edge" that is

normally seen between visible and NIR in green vegetation

begins to shift towards shorter wavelengths and, in the case

of senescent vegetation, may disappear entirely.

Optical properties of leaves in a third region of the solar

spectrum, the middle- or shortwave-infrared (SVVIR, 1300 to

2500 nm), are strongly mediated by water in tissues. Reflec

tance in this region is relatively high for vigorously growing

vegetation but decreases as tissues dehydrate. However, re

search suggests such drought-induced decreases in SWIR

reflectance are not sufficiently large over biologically signifi

cant changes in plant water content for the practical use of

this wavelength interval in the diagnosis of water stress in

the field (Bowman, 1989; Carter, 1991).

Spectral Reflectance Properties of Soils

Compared with plants, the spectral signatures of most agri

cultural soils are relatively simple. They usually exhibit

monotonic increases in reflectance throughout visible and

NIR regions (Condit, 1970; Stoner and Baumgardner, 1981;

Price, 1990). High soil water and high organic matter con

tents generally cause lower reflectances while dry, smooth

surfaced soils tend to be brighter (Daughtry, 2001). Occur

rence of specific minerals in soil have been associated with

unique spectral features (e.g., higher red reflectance in the

presence of iron oxides). In the SWIR, soil spectra display

more features than those observed in shorter wavelengths

but are still dominated by water content, litter, and miner

als (Gausman et al., 1975b; Henderson et al., 1992; Daugh

try, 2001). The presence of crop residue causes significant

changes in reflectance properties compared to bare soil, as
well as from partial plant canopies. Therefore, it is impor

tant to account for residue when observations are being

made across a range of soils and crop production practices

(Aase and Tanaka, 1991; Daughtry et al., 1996; Nagler et al.,

2000). The application of various remote sensing approaches

to soil management, especially as it pertains to definition

of zones for crop management, is reviewed in detail by

Barnes et al. (2003; p. 619 this issue).

Crop Canopies and Vegetation Indices

Not surprisingly, the spectral signatures of crop canopies in

the field are more complex and often quite dissimilar from

those of single green leaves measured under carefully con

trolled illumination conditions (Plate 1). Even when leaf

spectral properties remain relatively constant throughout

the season, canopy spectra change dynamically as the pro

portions of soil and vegetation change and the architectural

arrangement of plant components vary. Vegetation indices

(Vis) provide a very simple yet elegant method for extract

ing the green plant quantity signal from complex canopy

spectra. Often computed as differences, ratios, or linear

combinations of reflected light in visible and NIR wavebands

(Deering et al., 1975; Richardson and Wiegand, 1977; Tucker,

1979; Jackson, 1983), Vis exploit the basic differences be

tween soil and plant spectra discussed earlier. Indices such

as the ratio vegetation index (RVI = NIR/Red) and normal

ized difference vegetation index [NDVI = (NIR - Red)/(NIR

+ Red)], perform exceptionally well when management goals

require a quantitative means for tracking green biomass or

leaf area index through the season or for detecting uneven

patterns of growth within a field (Jackson and Huete, 1991;

Wiegand et al., 1991). Soil-adjusted vis such as SAVI and

modified SAVI have been developed to minimize effects of

varying background soil reflectance properties on vi perfor

mance (Huete, 1988; Qi et al., 1994).

Vegetation indices have served as the basis for many

applications of remote sensing to crop management because
they are well correlated with green biomass and leaf area

index of crop canopies (Figure la). Of particular interest

from energy balance, modeling, and crop management per

spectives, Vis have also been shown to provide robust esti

mates of the fractional amount of net radiation going into

soil heat flux (Figure lb; Clothier et al., 1986; Daughtry et

al., 1990; Kustas et al., 1993), as well as the fraction of ab

sorbed photosynthetically active radiation (fAPAR) captured

by the canopy for potential use in photosynthesis (Figure lc;

also see Hatfield et al. (1984a), Wiegand and Richardson

(1984), Wanjura and Hatfield (1986), Daughtry et al. (1992),

and Pinter et al. (1994)). Vegetation indices are also finding

application as surrogates for basal crop coefficients (Kc|,)

used in evapotranspiration and irrigation scheduling algo

rithms (Figure id).

Vegetation indices are frequently used synonymously

with plant health or vigor. This can be misleading, because

broad waveband vis typically lack diagnostic capability for

identifying a particular type of stress or for determining
why biomass is at a certain level. Narrower band indices

such as the Photochemical Reflectance Index (PRI), Water

Band Index (WBI), and Normalized Pigment Chlorophyll

Ratio Index (NPCI) are examples of reflectance indices that

are correlated with certain physiological plant responses
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Plate 1. Seasonal trends in hyperspectral reflectance

properties of spring wheat (Triticum aestivum L) in an

Arizona field experiment. Spectra were obtained from

(a) uppermost fully expanded leaves using a portable

spectroradiometer and an external integrating sphere and

(b) canopies under natural solar illumination (solar zenith

= 57°) using the same radiometer equipped with a 15°

field-of-view optics. Spectra are displayed as a function

of day of year and wavelength. Data are averages of

measurements from four replicates of well-watered,

amply fertilized treatments. (Pinter, unpublished data).

and have promise for diagnosing water and nutrient stress

(Pefuielas et ai., 1994; Gamon ef al., 1997). A canopy

Chlorophyll content index (CCCI: Clarke e\ al., 2001) relies

on a VI phis the reflectance in a narrow red edge band

(—720 nra] to distinguish nutrient stress from other causes

of reduced green blamass in cotton.

Hypeispactra] (i.e., reflectance for many contiguous

narrow wavelength bands) approaches have boon proposed

and lusted with varying degrees of success to delect water-,

nutrient-, and pest-induced stress in plants while minimiz

ing unwanted signals from varying soil conditions or bio-

mass amounts. These methods commonly use derivative

analysis, peak fitting procedures, and ratio analysis to asso

ciate spectral features with a particular stress [Horler et al..

1983; Demetriades-Shah et a!., 1990: Chappelle ef aL. 1992;

Masoni et a!., 1996; Osborne et ai, 2002b). When functional

relationships between hyperspectra and plant properties

cannot be envisioned using simple or multiple regressions,

more sophisticated Statistical approaches such as principal

component, neural net, fuzzy, and partial least-squares re

gression analysis have been employed (Plate 2; Warner and

Shank, 1997; Kimes el al., 1998). Spectral mixing tech

niques (McGwire et at., 2000) draw on a library of'pure"

hyperspectral signatures of scone components (endmem-

burs) to decompose images into their separate constituents

(e.g., sunlit and shaded soil, healthy and stressed plant

Emitted Thermal Radiation

All objects on the Earth's surface emit radiation in the ther

mal-infrared [TIR) region of the spectrum (-8 to 14 /im).

This emitted energy, which is proportional to the absolute

surface temperature of an object, has proven very useful in

assessing crop water stress because the temperatures of most

plant leaves are mediated strongly by soil water availability

and its effect on crop evapotranspiration (Jackson, 1982).
Following Tanner's [1903) observation that plant tempera

tures often differ Substantially from air temperature, ARS re

searchers examined environmental determinants of crop

temperature and began lo speculate on ways to use the latter

for monitoring water stress (Wlegand and Namken 1966;

Ehrler, 1973). When infrared thermometers became afford

able and more widely available in the mld-70s, ARS scien-

Plate 2. A false-color image derived from principle com

ponents analysis of aviris hyperspectral data (224

bands from 370 to 2510 nm) acquired over a 60-ha,

center-pivot irrigated corn field near Shelton, Nebraska

on 22 July 1999. Ground resolution is about 3 m.

Image shows bare soil areas, subplots within the field

where nitrogen fertilizer was applied in varying amounts,

and zones where irrigations were delayed to create

some water stress in the plants. {Schepers, unpub

lished data).
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Figure 1. Vegetation indices show a strong correlation with many agronomic and biophysical plant parameters, (a) The

normalized difference vegetation index (ndvi) was significantly correlated with changes in alfalfa biomass during a lamb

grazing study by Mitchell et al. (1990). (b) The ratio of red to near-infrared reflectance was useful for estimating the

fractional portion of net radiation (Rn) going into soil heat flux (G) in energy balance studies of Clothier et al. (1986)

and Kustas et al. (1993). (c) ndvi can be used as a surrogate for estimating the fractional amount of photosynthetically

active radiation absorbed by a cotton canopy for potential use in photosynthesis (Pinter et al., 1994). (d) ndvi also pro

vides a means for estimating basal crop coefficients (Ko) used in irrigation scheduling approaches for corn (after

Bausch and Neale, 1987) and alfalfa and cotton (Hunsaker and Pinter, unpublished data).

tists who had been using thermocouples to measure plant

temperatures, quickly adopted the new technology, and de

veloped a number of non-contact methods for assessing

water status and predicting crop yields over wider regions.

Descriptive terms were coined to describe the thermal

indices used in these methods. "Stress-Degree-Day" (SDD;

Idso et al., 1977b), "Crop Water Stress Index" (CWSI; Idso

et al., 1981; Jackson et al., 1981), "Non-water-stressed

baselines" (Idso, 1982), "Thermal Kinetic Window" (TKW;

Mahan and Upchurch, 1988), and "Water Deficit Index"

(WDI; Moran et al., 1994) began to appear in the agronomic

literature as routine measures of plant stress induced by

water stress. Studies have shown that many physical and

biological (e.g., disease) stresses that interfere with transpi

ration result in elevated plant temperatures and are corre

lated with plant water status and reductions to potential

yield (Idso et al., 1977a; Ehrler et al., 1978; Pinter er al.,

1979; Howell et al., 1984b; Burke et al., 1990; Hatfield,

1990). As an important component of the surface energy

balance, the TIR has also been used extensively in remote

techniques for assessing evapotranspiration (Hatfield et al.,

1983; Jackson et al., 1987; Moran et al., 1989b; Carlson

et al., 1995; Kustas and Norman, 1996).

Exogenous Factors Affecting Remote Observations

It is important to recognize that remote assessment of crop

growth and plant response to environmental stress is by no

means as simple or as straightforward as identifying chemi

cals in vitro via their spectral absorption features. Optical

and thermal properties of plant canopies change with stage

of growth due to age of individual tissues and architectural

arrangement of organs (Plate 1; also see Gausman et al.

(1971) and Hatfield et al. (1984b)). They are also strongly

affected by illumination and viewing angles, row orienta

tion, topography, meteorological phenomena, and other fac

tors not directly related to agronomic or biophysical plant

properties (Richardson et al., 1975; Jackson et al., 1979;

Pinter et al., 1983a; Pinter et al., 1985; Pinter, 1986; Pinter

et a!., 1987; Qi et al., 1995; Walthall, 1997). A significant

challenge for agricultural remote sensing applications is to

be able to separate spectral signals originating with a plant

response to a specific stress from signals associated with

650 June 2003 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



normal plant biomass or the background "noise" that is in

troduced by exogenous non-plant factors. Results from mul

tiple crops across a number of different locations indicate

that general relationships between spectral properties and

plant response are achievable (Wiegand ef al., 1990; Wie-

gand ef al., 1992b; Richardson ef al., 1992).

Water Management
Poor irrigation timing and insufficient applications of

water are ubiquitous factors limiting production in many

arid and semi-arid agricultural regions. As a consequence,

considerable ARS research has focused on remote sensing

strategies for determining when and how much to irrigate

by monitoring plant water status, by measuring rates of

evapotranspiration, and by estimating crop coefficients.

Plant Water Status

ARS scientists have proposed, refined, and tested a number

of non-invasive, thermal indices for determining whether

plants are meeting transpirational demands of the atmos

phere and inferring plant water status from that measure

ment. These indices, which include the SDD, CWS1, and WDI

mentioned above, have been used in research on more than

40 different crop species (Gardner ef al., 1992a; Gardner

ef al., 1992b). Although they vary in complexity as well as

the amount of ancillary meteorological and crop specific

parameters that are required, each index is based on plant

temperatures that can be obtained remotely using infrared

radiation thermometers or thermal imaging devices (Millard

et al., 1978; Gardner et al., 1992b).

The underlying concepts are simple. As plants deplete

soil water reserves, transpirational cooling is reduced, and

plant temperatures rise relative to ambient air temperature

or those of a well-watered reference crop. The total range

over which plant temperatures vary due to soil water avail

ability is dependent upon evaporative demand of the atmos

phere and crop specific transpiration characteristics. Upper

and lower boundary temperatures or "baselines" can be ob

tained empirically from prior field observations of stressed

and well-watered canopies as proposed by Idso et al. (1981)

and Idso (1982) or estimated from theoretical energy balance

considerations per Jackson et al. (1981; 1988). They can also

be derived from a combination of empirical and/or theoret

ical approaches (Clawson et al., 1989; Wanjura and Upchurch,

2000). Most studies have shown that the thermal infrared

is more sensitive to acute water stress than is reflectance

in visible, NIR, or SWIR wavelengths. However, the reflective

portion of the spectrum and Vis also respond to plant water

status when it produces a change in canopy architecture,

e.g., wilting or leaf rolling (Jackson and Ezra, 1985; Moran

et al., 1989a), and whenever there is chronic water stress

that slows growth, reduces green leaf area index (GLAI), or

alters senescence rates (Idso et al., 1980; Pinter et al., 1981).

Thermal plant water stress indices typically provide

adequate lead time for scheduling irrigations in regions

where supplemental water is needed to grow a crop. How

ever, successful application of the technique depends on

sufficient evaporative demand by the atmosphere, adequate

water holding capacity of the soil, and irrigation depth. The

TIK is less practical for scheduling irrigations in mesic areas,

where lower evaporative demand reduces temperature dif

ferences between well-watered and stressed plants. Under

these conditions, measurement errors and variation in plant

temperatures due to fluctuations in wind speed can obscure

the water stress signal (Keener and Kirchner, 1983; Stockle

and Dugas, 1992; Wanjura and Upchurch, 1997). But even

in humid regions, thermal techniques can provide useful

information when crops are exposed to a prolonged dry

spell or when spatial variation in soils causes stress in

portions of the field (Feldhake and Edwards, 1992; Feldhake

ef al., 1997; Sadler ef al., 1998, Sadler et al., 2000). Benasher

ef al., (1992) found thermal indices less useful for manag

ing micro-irrigation drip systems where the amount of soil

water replenished at each irrigation was relatively small

compared with the daily requirements of the crop.

Thermal indices can overestimate water stress when

canopy cover is incomplete and sensors view a combina

tion of cool plant and warm soil temperatures. For ground-

based measurements, this problem can be minimized by re

stricting observations to the transpiring foliage elements or

by using an oblique viewing angle. However, mixed pixels

are often unavoidable in nadir data from overhead sensors.

An elegant solution to this problem combines a VI (to ac

count for the amount of plant cover) with the TIR in a con

cept called the Water Deficit Index (Moran ef al., 1994;

Clarke, 1997; Clarke ef al., 2001). The approach improves

early season detection of water stress for irrigation sched

uling purposes and enhances the utility of TIR from aircraft

and satellite platforms.

The agricultural remote sensing literature abounds with

examples of the application of thermal indices to schedule

irrigations in various crops, e.g., alfalfa (Hutmacher ef al.,

1991; Moran ef al., 1994), bermuda grass (Jalalifarahani

et al., 1993; Jalalifarahani ef al., 1994), clover (Oliva ef al.,

1994a; Oliva ef al., 1994b), corn (Nielsen and Gardner,

1987; Fiscus et al., 1991; Yazar ef al., 1999; Wanjura and

Upchurch, 2000; Wanjura and Upchurch, 2002), cotton

(Pinter and Reginato, 1982; Reginato and Howe, 1985;

Shanahan and Nielsen, 1987; Wanjura and Upchurch, 2000;

Wanjura and Upchurch, 2002), sorghum (HatBeld, 1983a),

soybeans (Nielsen, 1990), sunflowers (Nielsen, 1994), and

wheat (Idso ef al., 1981; Howell ef al., 1986; Nielsen and

Halvorson. 1991; Alderfasi and Nielsen, 2001).

Most of the thermal irrigation scheduling algorithms

have been developed and tested at field plot scales using

ground-based infrared radiometers. At present, thermal

data from satellite platforms are limited to sensor systems

with spatial resolutions that are too coarse for practical use

in irrigated agriculture (e.g., ETM+ on Landsat 7 has a 10.4-

to 12.5-/tm sensor with a 60-m spatial resolution). Aircraft

TIR has not been widely available despite early demonstra

tions of its potential usefulness (Bartholic ef al., 1972;

Millard ef al., 1978). This is unfortunate because the ther

mal infrared contains unique information on plant water

status that is not available in the reflective portion of the

spectrum. A cost/benefit study by Moran (1994) shows that

irrigation scheduling with thermal infrared sensors on air

craft is both practical and affordable if growers within an

irrigation district band together to purchase imagery.

Methods for using TIR to assess spatial variation in soil

water availability also have utility in precision agriculture

applications. As an example, Hatfield ef al. (1982) showed

that patterns of surface temperature across fields in the

Central Valley of California varied with management prac

tices, and that these patterns were related to the unifor

mity of water application. Hatfield ef al. (1984c) found that

spatial variation of surface temperature within wheat and

grain sorghum fields changed with the degree of water

availability. They found that, as soil water content decreased

below 50 percent of available, the surface temperature

variability increased and suggested that this could be used

as a potential management tool. Opportunities for utilizing

spatial variation as a management tool for water have not

been fully exploited. One alternative may be to mount in

frared sensors on irrigation booms to provide the capabil

ity to adjust irrigation amounts based on crop needs as the

unit travels across the field.
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Evapotransplratlon (ET) and Crop Coefficients

Approaches for assessing the spatial and temporal dynam

ics of ET have been developed and tested by ARS scientists

at field, farm, and regional scales (Jackson, 1985; Reginato

et al., 1985; Jackson et al., 1987; Moran and Jackson, 1991;

Kimball et al., 1999). These techniques typically combine

ground-based meteorological observations with remote

measures of reflected and emitted radiation and then esti

mate latent energy (LE) exchange as a residual in the en

ergy balance equation. For cloud-free days, the near instan

taneous, remote estimates of LE obtained near midday with

data from satellites or aircraft can be converted to daily

values with reasonably good accuracy (Jackson et al., 1983;

Hatfield et al., 1983; Kustas et al., 1990). These techniques

hold considerable promise for estimating water use over

broad areas, but applications have been hampered by lack

of thermal sensors with suitable temporal and spatial reso

lution on satellite or aircraft platforms.

Another methodology for keeping track of plant water

needs makes use of routine meteorological estimates of po

tential evapotranspiration along with multispectral proxies

for crop coefficients (Kcb). State-of-the-art irrigation sched

uling routines such as the FAO-56 approach (Allen et al.,

1998) require Kc|, which are denned as the ratio between

actual crop evapotranspiration and potential evapotranspi

ration of a grass or alfalfa reference crop growing under

optimum agronomic conditions. Because Kcb are usually

obtained from published curves or tables, they lack flexi

bility to account for temporal and spatial variation in crop

water needs caused by unusual weather patterns, differ

ences in plant population, non-uniform water application,

nutrient stress, or pest pressures. ARS scientists recognized

the similarity between Kcb behavior and the seasonal trajec

tory of multispectral vis and first proposed, then later demon

strated, their use for irrigation scheduling (Jackson et al.,

1980; Bausch and Neale, 1987; Bausch and Neale, 1989;

Bausch, 1993; Choudhury et al., 1994; Bausch, 1995). When

VI surrogates for Kc|, (Figure Id) are included in scheduling

programs, the resulting feedback from plants enables grow

ers to better adjust irrigation timing and amounts to avoid

critical soil water deficits and offers the possibility for fine-

tuning precision irrigation systems.

Salinity Stress

Salts in soils and irrigation water are important factors

limiting productivity in many croplands (Rhoades et al.,

1989). Remedial solutions require mapping of affected areas

in space and time. This can be accomplished using remote

sensing measurements which identify contaminated soils

by their unusually high surface reflectance factors or by

detecting reduced biomass or changes in spectral proper

ties of plants growing in affected areas (Wiegand et al.,

1992a; Wiegand et al., 1994; Wiegand et al., 1996; Wang

et al., 2001; Wang et al., 2002a; Barnes et al., 2003 (p. 619,

this issue]). Significant correlations exist between mid-sea

son Vis and final yields of cotton and sorghum crops which

are affected by salinity stress at sub-Meld spatial scales

(Wiegand et al., 1994; Yang et al., 2000). Studies have also

shown an increase in canopy temperature of plants exposed

to excessive salts in irrigation water (Howell et al., 1984a;

Wang et al., 2002b), suggesting the possibility of previsual

detection of stress which could be remedied by increasing

the leaching fraction or switching to a higher quality of

water.

Thermal Kinetic Window

ARS scientists noted that transpirational cooling has an im

portant role in maintaining tissue temperatures of irrigated

crops well below damaging levels (i.e., less than 40°C)

even in desert regions where plants are regularly exposed

to high radiant and sensible heat loads (Burke et al., 1985;

Hatfield et al., 1987; Mahan and Upchurch, 1988; Upchurch

and Mahan, 1988). Using the apparent Michaelis constant

(Km) and variable fluorescence, they defined a range of

temperatures that they called the "Thermal Kinetic Win

dow" (tkvv) within which biochemical processes of tissues

were functioning at optimal rates and they proposed that

infrared thermometers could be used to reveal whether

plants were within that range (Burke and Hatfield, 1987;

Burke et al., 1990). The TKVV was found to be species de

pendent, corresponding to what might be expected based

on a crop's geographical distribution and seasonal growth

patterns, e.g., the TKW for wheat was about 20°C, while

that for cotton was about 28°C (Hatfield and Burke, 1991;

Burke, 1994). The ARS team also discovered that biomass

production and final yields were well correlated with the

amount of time a crop spent within its TKW (Burke et al.,

1988), and went on to develop and patent a sensor system

called BIOTIC (Wanjura and Mahan, 1994, Mahan et al.,

2000; Wanjura and Upchurch, 2000), which uses the con

cept to control micro-irrigations and overcomes some of

the problems noted by Benasher et al. (1992).

Nutrient Management
Efficient management of nutrients is one of the main chal

lenges facing production agriculture. Here, remote sensing

is providing field-scale diagnostic methods that will enable

detection of nutrient deficiencies early enough to avoid yield

or quality losses. When interfaced with variable rate sprayer

equipment, real-time canopy sensors could supply site-

specific application requirements that lessen contamination

of surface- or groundwater supplies and improve overall nu

trient use efficiency (Schepers and Francis, 1998).

Nitrogen

Ample supplies of nitrogen (N) are essential for modern

crop production. However, N is often over-applied without

regard to crop requirements or potential environmental

risk just to insure that adequate levels are present for the

crop. A case in point involves corn grown in the upper

Midwestern United States where synchronizing N applica

tions to coincide with maximum crop uptake is desirable

but tissue testing of leaves is not widely employed for de

termining crop needs and thus fields are often over fertil

ized. Relative techniques were developed for using a SPAD

chlorophyll meter1, color photography, or canopy reflectance

factors to assess spatial variation in N concentrations across

growers' corn fields (Schepers et al., 1992; Blackmer et al.,

1993; Blackmer et al., 1994; Blackmer et al., 1996a; Black

mer et al., 1996b; Blackmer and Schepers, 1996; Schepers

et al., 1996). Because these techniques were based on com

parisons with readings obtained from an adequately fertil

ized strip in the same field, they obviated strict requirements

for beforehand knowledge of the relationship between nutri

ent concentration and crop reflectance, or precise sensor

calibration, or the need to convert data to surface reflectance

factors.

In the Great Plains, where more than half of the N re

quired for corn is typically applied prior to planting, a

strategy that delivers small amounts of fertilizer only "as

needed" during the season can reduce N leaching by rain

fall or excessive irrigation. Bausch and Duke (1996) devel-

1 The spad meter (Minolta Camera Co. Ltd. Japan) is a handheld de

vice that estimates in vivo pigment concentrations using differential

transmittance of light through the leaf by light emitting diodes (led)

at 650 nm and 940 nm (Wood et al. 1993; Adamson et al., 1999).
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oped an N reflectance index (NRI) from green and NIK re

flectance of an irrigated corn crop. The NRI was highly cor

related with an N sufficiency index calculated from SI'AD

chlorophyll meter data and provided a rapid assessment of

corn plant N status for mapping purposes. A more rocent

study using the NRI to monitor in-season plant N resulted

in reducing applied N using fertigation by 39 kg N ha '

without reducing grain yield (Bausch and Diker, 2001).

Because this index was based on the plant canopy as op

posed to the individual leaf measurements obtained with

SPAD readings, it has potential for larger scale applications

and direct input into variable rate fertilizer application

technology.

Taking an indirect approach, Raun el al. (2001) rea

soned that a mid-season, remote estimate of potential yield

would help growers adjust topdress N applications based

on preplant soil N tests, within season rates of mineraliza

tion, and projected N removal. They estimated potential

grain yields of winter wheat [Triticum aestivum L.) from

several post-dormancy NDVl measurements which were nor

malized by the number of growing degree days that had ac

cumulated between the observation dates. This normaliza

tion adjusted for differences in local weather and also

compensated for spatial variations in N requirements caused

by differences in soil properties and management options

that affected stand establishment and early season growth.

Conceivably such approaches could be implemented wher

ever remote means for predicting yield are feasible.

Other Nutrients

Monitoring symptoms caused by other nutrient deficiencies

can be problematic because they rarely occur uniformly

across a field and often need to be distinguished against

background variation in canopy density. Osborne ef al.

(2002a; 2002b) have conducted research which shows use

fulness of hyperspectral data in distinguishing differences

in N and P at the leaf and canopy level, but the relation

ships were not constant over all plant growth stagos. Adams

ef al. (1993; 2000) have detected Fe, Mn, Zn, and Cu defi

ciencies in soybean leaves using both leaf fluorescence

and hyperspectral reflectance techniques that evaluate leaf

chlorosis based on the shape of the reflectance spectrum

between 570 and 670 nm (Yellowness Index; Adams ef al.,

1999). The increased availability of hyperspectral imaging

sensors and advanced analysis tools like partial least-squares

regression and spectral mixing techniques mentioned ear

lier will facilitate studies to extend this concept to the

canopy level.

It should be mentioned that AKS scientists have worked

for a number of years with the Environmental Protection

Agency (EPA), the U.S. Geological Survey (USGS), and NASA

in developing and refining new remote sensing technolo

gies for detecting changes in plant biochemistry, physiol

ogy, and metabolism (e.g., early research using plant fluo

rescence to detect water stress in citrus (McFarlane et al.,

1980)|. These newer approaches using laser induced fluo

rescence (LIF) have considerable potential for previsual

identification of nutrient and water stress and for detecting

optimal levels of plant growth and yield under different

fertilization rates in the field (Chappelle ef al., 1984a;

Chappelle et al., 1984b; McMurtrey et al., 1994; Mc-

Murtroy ef al., 1996; Corp et al., 1997; Daughtry et al.,

1997; Daughtry et al., 2000).

Pest Management
Remote sensing lends itself exceptionally well to the de

tection of anomalous locations within a field or orchard

that have been differentially affected by weeds, diseases,

or arthropod pests (Hatfield and Pinter, 1993). In fact,

more than 35 years ago, ARS scientists were using aerial

color-infrared photography for this purpose and relating

their findings to laboratory spectra of pest damaged leaves

(Hart and Myers, 1968).

Weeds

Weeds represent a large management cost to growers be

cause they compete with crops for water, nutrients, and

light, often reducing crop yield and quality. Inappropriate

or poorly timed herbicide applications can also have unin

tended side effects on crop performance and the environ

ment. Thus, in recent years there has been a shift away

from uniform, early season weed control options towards

approaches that rely on using herbicide-ready crops and

applying post-emergence herbicides only as needed. This

strategy has generated increased interest in using remote

sensing to define the extent of weed patches within fields

so they can be targeted with variable rate ground and aer

ial spray rigs. Such approaches avoid applications to weed-

free areas, reducing herbicide usage and potential conta

mination of ground water without compromising weed

control.

Obviously, weed identity is important when tailoring

herbicide choices and treatment rates. Early laboratory stud

ies by Gausman ef al. (1981) revealed species differences in

optical properties of weeds. Later, Richardson ef al. (1985)

demonstrated that multispectral aerial video images could

be used to distinguish uniform plots of johnsongrass and

pigweed from sorghum, cotton, and cantaloupe plots. They

speculated that, as technology improves and provides nar

rower band data, similar techniques might provide real-time

information on weed infestations that were mixed in with

the crop canopies. This approach is proving very useful in

managing weed species such as salt cedar and leafy spurge

in wildlands and range managed for grazing (see review by

Hunt et al. (2003; p. xxx this issue)). Dickson et al. (1994)

and Dickson and Bausch (1997) developed a method for

crops that used digital images in visible wavelengths, neural

networks, and the spatial characteristics of weed patches for

identifying velvetleaf and wild proso millet weeds in corn

fields. Their method achieved an overall accuracy of 94 per

cent when tested on an independent data set.

Hanks and Beck (1998) utilized spectral contrasts be

tween green plants and bare soil to trigger real-time spray

ing of herbicide only on the plants that were present be

tween soybean rows, controlling weeds as effectively as

with conventional continuous-spray methods, but reducing

herbicide usage and production costs. Machine vision tech

niques have also been used for identifying weed seedlings

based on leaf shapes (Franz ef al., 1991; Franz et al., 1995)

and for guiding an automatic precision horbicide sprayer

(Tian ef al., 1999).

The ability to detect accidental herbicide damage to a

crop has considerable value to a grower for insurance or

litigation purposes. Comparing visual assessment of herbi

cide injury in cotton with color-infrared photography, N1R

videography, and wideband handheld radiometer ap

proaches, Hickman ef al. (1991) concluded that remote de
tection and mapping of moderate herbicide damage was

not only possible, but that the application amounts could

be estimated. Donald (1998a; 1998b) used video phologra-

phy to quantify stunting of corn and soybean plants ex

posed to herbicide damage. Using a laboratory-based multi-

spectral fluorescence imaging system (MF1S), Kim ef al.

(2001) were able to detect changes in soybean leaf fluores

cence after they were treated with a herbicide. To improve

application efficiency of herbicides, Sudduth and Hummel

(1993) developed a portable NIR spectrophotometer for use

in estimating soil organic matter as part of the estimation
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procedure for the amount of herbicide to be applied. Thus,

remote sensing can not only offer field-scale assessment of

herbicide injury problems but also can help define the op

timum rate of herbicide application.

Arthropod and Nematode Pests

Demonstrated remote sensing methodologies for identify

ing and managing insect, mite, and nematode populations

include detecting actual changes in plant pigments caused

by pest presence, monitoring plants for damage done by

the pests, and identifying areas susceptible to infestation.

In what are now considered classic studies, ARS scientists

Hart and Meyers (1968) used color-infrared (CIR) photogra

phy and supporting hyperspectral reflectance data to iden

tify trees in citrus orchards that were infested with brown

soft scale insects (Coccus hesperidum). They were able to

monitor changes in infestation levels because the honey-

dew excreted by the scale insects was an excellent growth

medium for a sooty mold fungus that had very low re

flectance in both the visible and NIR wavelength regions

and tended to accumulate as the season progressed (Gaus-

man and Hart, 1974). Similar strategies using CIR film and

multispectral videography have been used to detect citrus

blackfly (Aleurocanthus woglumi Ashby) and brown soft

scale problems in citrus as well as whitefly (Bemesia spp.)

infestations in cotton (Figure 2; also Hart et al., 1973;

Everitt et al., 1991; Everitt et al., 1994; Everitt et al.,

1996).

In a greenhouse study designed to characterize the ef

fects that sucking insects have on leaf reflectance, Riedell

and Blackmer (1999) infested wheat seedlings with aphids

[Diuraphis noxia Mordvilko) or greenbugs (Schizaphis gra-

minum Rondani). After 3 weeks they measured reflectance

properties of individual leaves in an external integrating

sphere. Compared with healthy plants, the leaves from in

fested plants had lower chlorophyll concentrations and

displayed significant changes in reflectance spectra at cer

tain wavelengths (notably 500 to 525, 625 to 635, and 680
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Figure 2. Comparisons between hyperspectral reflectance

factors of a normal green cotton leaf and a cotton leaf

covered with honeydew produced by whiteflies (Semes/a

(abaci), a leaf covered with a secondary mold Aspergillus

sp. growing on the whitefly honeydew, and a chlorotic leaf

without honeydew. Data were acquired with a Spectron SE-

590 spectroradiometer. Solar incidence angle was 45 de

grees to the leaf surface and viewing angle was normal to

leaf surface (Pinter, unpublished data).

to 695 nm), suggesting the potential usefulness of canopy

spectra for identifying outbreaks in actual field situations.

Using hyperspectral imagery obtained during NASA's

Airborne Visible Infrared Imaging Spectrometer (AVIRIS)

flights over cotton fields in California, Fitzgerald et al. (in

press) were able to determine the extent and severity of

strawberry spider mite [Tetranychus turkestani U.N.) dam

age in different fields. They first built a reference library of

"pure" spectral signatures (endmembers) from mite-infested

leaves, which take on a reddish pigmentation, as well as

from healthy leaves and sunlit and shaded soil. Then using

spectral mixing analysis, they decomposed ("unmixed")

the hyperspectral aviris images of the fields into compo

nents associated with the endmembers, including the

healthy and mite-stressed signatures. With this type of geo-

referenced imagery over broad regions, mite-afflicted zones

within fields could be precisely located for traditional pest

scouting and variable rate pesticide applications. Targeted

approaches to pest management reduce the total amount of

pesticides used and have the added benefit of providing

refugia for beneficial insects which are then able to quickly

recolonize the treated areas and minimize the chances of

secondary pest outbreaks.

A simple approach for detecting pests relies on changes

in green plant biomass or GLAI caused by herbivory, leaf

skeletonizing, or root pruning. These pest problems appear

as anomalous regions in the midst of otherwise vigorously
appearing vegetation in aerial photographs or in images

generated from multispectral Vis. Typically, this approach

works much better in monocultural field crops than in

mixed crop- or natural ecosystems. Early examples from

ARS research include use of CIR film to evaluate effect of

crop rotation and soil fumigation on a nematode [Roty-

lenchulus reniformis) occurring in Texas cotton fields

(Heald et al., 1972). Cook et al. (1999) used multitemporal

NIR videography to monitor the seasonal progression of the

southern root knot nematode (Meloidogyne incognita Chit-

wood) and its associated soil-borne fungi complex in

kenaf (Hibiscus cannabinus L.). Of course, areas of reduced

plant vigor could conceivably be caused by a number of

factors unrelated to pests, so it is likely that additional

spectral, spatial, and temporal clues, provided within the

context of a decision support system, will be required to

uniquely identify the problem.

Given the current remote sensing technologies, it is

unlikely that methods capable of detecting very low num

bers of important arthropod or nematode pests will be de

veloped soon. However, knowing when and where to look

for them can be advantageous for directing field scouts and

taking pre-emptive control measures. Active radar systems

have been used to monitor the dispersal and migratory flight

behavior of economically important insects, including hon

eybees, noctuid moths, and grasshoppers (Loper et al., 1987;

Hobbs and Wolf, 1989; Beerwinkle et al., 1993; Wolf et al.,

1995). This is information that could be obtained routinely

using the existing network of weather radars (Westbrook

and Isard, 1999) and used to alert growers that local crops

are at heightened risk.

It is also feasible to use large scale aerial photography

to identify landscape features and relate them to the abun

dance of pests and their predators as was done by Elliott

et al. (1999) for the cereal aphid in South Dakota. Hypothe

sizing that certain insects, like the tarnished plant bug (Lygus

lineolahs), were more likely to feed in the most rapidly

growing sections of cotton fields, Willers et al. (1999) used

NDVI images of commercial cotton fields first to estimate

crop vigor (Plate 3) and then to guide field scouts to those

areas for directed sampling. The imagery and scouting re

ports were used in a CIS to construct plausible maps of in-
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sect abundance. The maps were loaded into the controller

of a GPS-equipped ground sprayer which then applied pes

ticide to high risk areas. In commercial field trials, these

approaches reduced pesticide use by nearly 40 percent and

lessened the overall impact of toxic chemicals on the envi

ronment (Dupont et al, 2000).

Examples in which ARS employed remote sensing technol

ogy for detecting crop disease and assessing its impact on

productivity include using CIR photography to identify cir

cular areas affected by cotton root rot, Phymatotrichum om-

nivorum (Heald et al, 1972; Henneberry et al, 1979) and to

estimate yield losses caused by blackroot disease in sugar

beets (Schneider and Safir, 1975). Cook et al (1999) also

demonstrated the potential for aerial video imagery to de

tect P. omnivorum in kenaf, a crop whose tall growth habit

makes it almost impossible to survey from the ground.

The TIR can provide early, sometimes previsual, detec

tion of diseases that interfere with the flow of water from

the soil through the plant to the atmosphere. As an exam

ple, Pinter et al. (1979) found that cotton plants whose

roots were infected with the soil-borne fungus P. omnivo

rum and sugar beets infected with Pythium apaniderma-

tum both displayed sunlit leaf temperatures that were 3 to

5°C warmer than adjacent healthy plants. The TIR was also

useful for detecting root disease in red clover under irri

gated conditions (Oliva et al, 1994a). Much more research

is required when using remote sensing for identifying spe

cific diseases or when separating them from other causes

of plant stress. Hyperspectral techniques are likely to pro

vide some assistance, but coupling existing techniques

with weather driven computer models of disease develop

ment will probably provide the best approach.

Yield Prediction
Yield is a very important end-of-season observation that in

tegrates the cumulative effect of weather and management

practices over the entire season. Remote sensing approaches

can provide growers with final yield assessments and show

variations across fields. In this respect, they are similar to

combine-mounted yield monitors that are a key component

of precision agriculture. But remote measurements differ in

that they also can be taken frequently during the season,

providing temporal information on growth rates and plant

response to dynamic weather conditions and management

practices. There are two general approaches to using remote

sensing for yield assessment. The first is a direct method, in

which predictions are derived totally from the remote mea

sures. The second is indirect, whereby remotely sensed pa

rameters are incorporated into computer simulations of crop

growth and development, either as within-season calibra

tion checks of model output (e.g., biomass or GLAl) or in a

feedback loop used to adjust model starting conditions or

processes (Maas, 1988; Mass, 1993).

Temporal Remote Sensing Models

Two general classes of empirical models have been devel

oped for predicting crop yield: reflectance-based (green

leaf area or biomass) and thermal-based (stress) models.

The former were based to a large extent on early studies by

ARS scientists who related leaf and canopy reflectance to

yields of cotton (Thomas et al, 1967) and vegetable crops

(Thomas and Gerberman, 1977) and NASA and university

researchers looking at grasses, corn, soybeans, wheat and

alfalfa (e.g., Pearson et al, 1976; Tucker et al, 1979; Tucker

et al, 1980a; Tucker et al, 1980b; Tucker et al., 1981).

Approaches by Idso et al. (1977c), Pinter et al (1981), and

Aase and Siddoway (1981) integrated either canopy albedo

data or vis through the season, reasoning that this was sim

ilar to leaf area duration methods agronomists often used

to predict final yields. It is likely that these empirical ap

proaches are variety specific as suggested by Hatfield (1981),

who was unable to find a consistent relationship between

the spectral indices and yield in his survey of 82 different

varieties of wheat. Aase and Siddoway (1981) had cau

tioned that the relationships of spectral indices to yield

were dependent upon normal grain-filling conditions for

the crop, and deviations from normal soil, weather, or

agronomic practices may not always be reflected in a sim

ple VI time trajectory. An interesting observation by Idso

et al. (1980) revealed that the yields of spring wheat and

barley cultivars were related to the rate of crop senescence

as measured by end of season decline in the ndvi. The

higher yielding cultivars showed the most rapid rate of

senescence.

A number of early studies related temporal trajectories

of TIR water stress indices to yields of wheat (Idso et al,

1977a; Idso et al, 1977b), alfalfa (Reginato et al, 1978),

and cotton (Pinter et al, 1983a). Crops exposed to higher

levels of water stress during the season had the highest cu

mulative thermal stress indices and usually yielded the

least. Hatfield (1983b) took the next step and coupled fre

quent spectral reflectance and thermal observations in a

more physiological method to predict yields in wheat and

grain sorghum [Sorghum vulgare L. Moench.). This method

was found to be a good estimator of crop yield with a mag

nitude of errors (less than 10 percent) that was comparable

to those observed in repeated small samples across large

fields. While accurate, this method required daily mea

sures of TIR during the grain-filling period to estimate crop

stress from soil water and agronomic practices, e.g., nutri

ents. Of course, current satellite sensor systems have nei

ther the temporal nor spatial resolution to meet this re

quirement for data, yet this study showed that combining

information in different regions of the spectrum can be a

powerful approach for predicting yield.

Advantages of Remote Sensing over Yield Monitors

For many crops, combine-mounted yield monitors have be

come the de facto standard for assessing within-field vari

ability and determining zones for precision crop manage

ment. Yet there is a growing pool of information indicating

that combine-derived yield maps may fail to accurately de

pict the spatial structure of plant yields within a field and

seldom show the true extremes in variability (Arslan and

Colvin, 2002). Likewise, the capability to diagnose or man

age a specific yield-reducing stress is limited with the end-

of-season maps that yield monitors produce. The increased

availability of aircraft-based sensor systems with improved

spatial and spectral resolution and the potential to obtain

data several times during the season have prompted scien

tists to use remotely sensed imagery as a proxy for a yield

map generated by a combine (Plate 4; Yang and Anderson,

1999; Yang et al, 2000). Pre-harvest estimates of plant pro

ductivity enable growers to delineate management zones

(Yang and Anderson, 1996) and to make earlier and better-

informed marketing decisions. Pro-harvest imagery also fa

cilitates directed field scouting for precise diagnosis of

stress and, where possible, enables growers to take timely

remedial actions.

In general, reliability of imagery to estimate yields de

creases as the time before harvest increases because there

is more opportunity for factors like drought, nutrient defi

ciency, insect infestation, and disease to impact yield. As

an example, Shanahan et al (2001) showed that the time

of corn pollination was not a good growth stage to estimate
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Plate 3. Multispectral imagery of an 81-ha Mississippi

cotton field in which spatial variation in plant growth is

represented by different colors. Areas with more vigorous

plant growth (green) are more likely to attract and support

high populations of tarnished plant bugs {Lygus lineolaris).

(Image courtesy of ITD Spectral Visions, Slennis Space

Center, Mississippi and ars. Genetics and Precision Agri

culture Research Unit, Mississippi State University.)

yield because any numbur of crop stresses could cause

tassel emergence dates to vary. imagery acquired midway

through the grain fill period provided the bs81 relationship

(r > 0.80) between several Via and grain yield in their

study. Yang cl al, (200!)] found similar results (r = 0.70)

Tor sorghum. Yields ol'rnin-led crops can be inure difficult

to estimate using remote sensing because water stress al

certain critical gruwth stages can canst; irreversible loss in

yield potential. As was found during the Large Area Crop
Inventory Experiment (MacDonald and Hall, 1980), it is

likely thai imagery collected several tlrnse throughout the
season will improve yield predicting capabilities.

Producers can expect imagery anil yield maps to dis

play similar patterns, but statistical celattonahlpB between
yield values extracted from a combine-generated yield map
and imagery values am often weak. This may be because
grain flow dynamics within the yield monitor, coupled with

the direction of combine travel, make it difficult to compare

the two techniques directly. Even when pixel averaging
techniques are used and combine travel is properly ac

counted for. r values less than 0.29 are common unless the

field has an extreme range in yield values. Side-by-sida

yield comparisons between large yield monitors and small

plot combines (Arslan and Colvin, 201)2] or random hand-

harvested plots within management zones (|. .Scbepers, un

published) clearly illustrate that inaccuracies in yield moni

tors can reflect poorly, albeit unjustly, on the value of remote

sensing as a valuable management tool. One idea bsing tested
for commercialization is to combine pro-harvest imagery and

yield monitor dala to generate a map that more accurately

depicts the spatial characteristics of within-field yield varia

tion (similar to what is shown in Plate 4).

Integrating Remote Sensing with Crop Simulation Models

Although capabilities to simulate crop growth and develop

ment have increased considerably over the pasl decades,

predicting the effects of management factors, unusual or ex

treme weather events, and pest pressures on crop water and

nutrient requirements and final harvestable yields is still far

from being an exact science. Remotely sensed imagery is a

practice] method for providing crop simulation models with

canopy state variables which change dynamically in time
and space [Wiagand et al., 1970). At the same time, crop

models can increase the information that can be derived

from remotely sensed images by extrapolating for periods

when inclement weather precludes dala collection and by

providing the ability to predict crop and yield response to

changes in management strategies. Various approaches to

integrating remotely sensed data into crop models have been

the subject of a review on the topic by NIoulin at al. (1998).

While the objective of these integrated approaches often has

been to monitor crop condition and yield at regional scales

[e.g.. Doraiswamy and Cook. TJUa) and at the state and

county levels iDoraiswamv at «/., 21)03; p. 665 this issue),

recent efforts have also focused on predicting within-iiold

variability in crop status (Sadler el a!,. 2002). Coupling

the remotely sensed imagery with the models can be done

directly through hiomass. GLAI, and phenological stages, or

indirectly by inferring fAFAR, plant water status, nutrient

status, disease, insect, or weed pressure. Examples include

• iterative adjustment nf the mortal's initial conditions and

Cllltivar specific paremetBrfl so that the model's predictions

agree with periodic remotely sensed estimates of ET and LA!

(Maas. 1U!)J):

• Forcing model predictions to mntch remotely sensed esti

mates of actual Field conditions at a given point in the sea

son (Sadiur et al., 2002); and

• Using radiative transfer models so satellite reflectance data

can be directly compared to a crop model's predictions

(Nouvellou tit a}., 21101].

Crop models provide the ability to simulate different

management Options under different weather conditions,

while the remotely sensed data allow the models to ac

count tor spatial variability and provide occasional "reality

checks." As these methods mature, it will become increas

ingly important to incorporate model output with rnulti-

dhjeclive decision support systems that also consider fac

tors such as economic, labor, and time constraints (Jones

and Barnes, 2000). Decision support systems will also be

needed to manage the large amounts of remotely sensed

and other data contained in n CIS (Doraiswamy at a!., 2000).

Other Aspects or Crop Management

Plant Population

Plant density is an important variable affecting productivity

in many systems. Populations vary with planter performance,

soil parameters, weather, field slope and aspect, seedling dis

ease, elc. For some crops like corn or non-tillering varieties

of grain sorghum, yield potential is reduced when popula

tion numbers are outside of fairly narrow optimum ranges.

Tillering, or branching characteristics of other crops (e.g..

wheat, cotton, soybeans) render final yields less sensitive to

population density, although uniform stand emergence and

early canopy closure are effective in achieving good weed

control and in influencing early maturity. Conversely, too

dense a stand can result in barren plants without marketable

fruit or a canopy more susceptible to disease or attractive to

arthropod pests. Variable-rate planters now make it possible

to adjust seeding rate to compensate for emergence variations

or achieve densities that are better matched to site-specific

soil characteristics within the Held.
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Plate 4. Within-season yield maps generated from digital color-infrared images from a grain sorghum

field on three dates during the growing season (a, b. and c) and data obtained with a yield monitor

at the end of the season (d) (from Yang el at., 2000).

One goal of commercial remote sensing providers is to

offer reliable, early season estimates of plant density

which would enable "rowers to identify seedling diseases

or insect infestations, to decide on the need for replanting,

to plan herbicides and fertilizer needs, and to interpret

end-of-season yield maps. Plattner and Hummel (1996)

devised a non-contact, combine-mounted sunsor that used

a photoelectric emitter and. detector pair to provide infor

mation on corn plant population, spacing, skips, and dou

bles. The sensor estimated plan! spacing at the early

growth stage with an error of 3 percent and at harvest with

a (i percent error. In field tests, filtering algorithms were

able to remove the effects of narrow beam interruptions

due to small weeds, but large corn leaves were a source of

error.

Ideally, multispectral imagery taken shortly after emer

gence could be used to determine plant populations for

management purposes. In practice, however, the seedling

planls are usually too small and their signal is overwhelmed

by thai of the soil. Acquiring imagery very early in the day

(i.e., large solar zeniths) or with off-nadir viewing angles

offers a potential solution to plant detection at low loaf

area levels (Pinter et al., 1983b; Bauscb and Diker, ZIJ01).

As more sensitive sensors arc deployed and techniques for

calibration and removing effects of changes in soil back

ground improve (Moran el al., 200,1; p. 705 ibis issue], ca

pabilities for accurate assessment of early season plant

density should improve.

Growth Regulators and Defoliants

Glowers are increasingly using chemical plant growth reg

ulators such as mepiquat chloride (Pix®) as a means for

manipulating plan! growth to facilitate mechanical harvest

ing and encourage early maturity. In the late 1970s, aerial

CIR photography was used by ARS scientists to monitor the

effectiveness of defoliants used to reduce late-season fruit

ing and decrease the number of overwintering pink boll-

worms [Peclinophora gossvpiella Saunders: Henneberry

et al., 1979). Subsequently, Richardson and Gausimm (1982)

examined the effect of Pix® on the reflectance properties

of cotton leaves and canopies, demonstrating the potential

for remote sensing to survey acreages of treated cotton.

Shanahan and Nielsen (1987) used the CWS1 to evaluate

performance of plant growth regulators in conserving early

season waler use by corn in semiarid regions. More re

cently researchers used high spatial resolution, multispec-
Iral imagery lo apply Pix® only where it was needed to

control rank growth in 400+ ha of cot Ion in Mississippi

(Uupont et al., 2000).

Overall Challenges and Opportunities
Twenty years ago, in a seminal essay on the potential use

of remote sensing for making day-to-day farm management

decisions, Ray Jackson (1984) stressed the overall impor-

lance lo the grower of (1) timeliness, (2) frequency, and

(3) spatial resolution of data (in that order). Most of his ob

servations remain relevant today. There have been substan-
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tial improvements in instantaneous field of view but very

few farmers presently have access to regular images of

their farms and even when they do, slow turnaround of the

processed product continues to be a problem.

Despite these shortcomings, there is no question that

remote sensing technologies will permeate many aspects of

farming in the future. Grower acceptance will increase as

products with higher spatial and temporal resolution be

come more affordable. That, in turn, will reduce costs, en

couraging better coverage and faster image delivery. Build

ing grower confidence will also require that remote sensing

providers pay greater attention to calibration issues, convert

imagery to reflectance, and standardize on optimum wave

lengths and data collection techniques (see Moran et ah,

2003; p. 705 this issue). This will result in a more consistent

product that tells the same story from year to year and brings

value-added information to overall farming operations.

From a research perspective, however, there are several

overarching and inter-related challenges that must be dealt

with in order to advance remote sensing beyond today's

largely qualitative applications for crop management. The

first deals with understanding and being able to model

bidirectional reflectance properties of agricultural targets.

Even the most basic relationship between green leaf area

index and NDVI changes significantly with solar illumina

tion angles, sensor viewing direction, or plant row orienta

tion. So a proper accounting for bidirectional effects will

render observed spectral characteristics less dependent on

the time of day or season when data are acquired, or on

non-agronomic properties like row direction or spacing.

A second major research challenge is to develop stress

detection algorithms that perform reliably across space and

time. Techniques should be independent of location, soils,

and management factors. They should also function well

throughout the season, from planting through maturity.

Here, there is a need to identify unique signatures for spe

cific stresses amidst the constantly changing background

associated with normal crop growth and development, i.e.,

spectral complexities introduced by incomplete plant

cover. Newer techniques, such as spectral mixing analysis,

can be used to discern water-, nutrient-, and pest-induced

stress signals from "noise" introduced by soil and non-

plant factors. Advanced approaches will integrate remotely

sensed parameters with expert and decision support sys

tems that compare spatial and temporal patterns in crop

spectra and emittance with historical data and do so within

the context of current weather and management procedures.

Combining remote observations with existing crop simula

tion models will impart a spatial dimension to the models

that will improve their predictive capabilities and useful

ness to farm managers.

The sheer quantity of spectral, temporal, and spatial

information contained in a sequence of remotely sensed

images offers unique opportunities for monitoring and man

aging agricultural resources at both the local and global

scales. At the field and farm level, historic imagery could

be combined with crop calendars, heat units, precipitation

records, and yield monitor data to develop maps showing

areas that are prone to water stress, nutrient deficiency, or

pest problems under a particular environmental scenario.

Current imagery could then be used in decision support

systems to provide early warning of yield reducing stress.

With variable rate technology becoming more widespread,

such information would be invaluable to producers within

their decision-making framework. Archived satellite im

agery also provides scientists and policy makers with an

opportunity to monitor the impact of global change on

world agriculture. Growers seeking an equitable, scientifi

cally based method for assessing their environmental stew

ardship or credits for carbon sequestration could likewise

use imagery to document their achievement.

Conclusions
Modern management of agricultural resources is a complex

endeavor that is now benefiting from a convergence of tech

nical advances in information sciences, geographic posi

tioning capabilities, and remote sensing systems. Much of

the fundamental research relating spectral properties of

soils and crops to agronomic and biophysical parameters

has been accomplished by ARS researchers working collab-

oratively with NASA and university scientists in a variety

of programs over the past four decades. Many aspects of

crop management have already begun to benefit from ap

plications of remote sensing technology. As growers gain

more confidence in its use, additional opportunities will

present themselves. The future brings tremendous prospects

for integrating the spatially and temporally rich informa

tion provided through remotely sensed multi- and hyper-

spectral imagery with the capabilities of management-ori

ented crop simulation models.
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