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An Empirical Model of Hydraulic Roughness for Overland Flow

C. J. Lopez-Sabater, K. G. Renard and V. L. Lopes'

Abstract

Physically based runoff and erosion simulation models usually rely on the representation of watersheds using

cascades of planes and channels, and on the solution of 1-D flow equations. Often, the effect of

microtopography and spatial variability of surface properties on overland flow is considered indirectly by

derivation ofan effective roughness parameter using optimization procedures. Research reported here developed

a mathematical model of hydraulic roughness to be used as an integral part in an overland flow model. The

hydraulic roughness is described using a neural network model, as a function of the soil surface configuration

and flow characteristics. The neural network provides estimates of the hydraulic roughness (Darcy-Weisbach's,

Chezy's and Manning's roughness coefficients). In addition, the neural network model assisted in selecting a

method to characterize the soil surface configuration.

Keywords. Overland flow, hydraulic roughness, mathematical models, neural networks.

Introduction

Microtopography, soil cover, roughness and infiltration capacity are some of the surface characteristics that

influence overland flow and erosion. Hydraulic roughness, or friction, represents the resistance to flow caused

by roughness elements, including soil particles and aggregates, rocks, vegetation and microrelief. The term also

incorporates the retardance effects of impacting raindrops. The effect of microtopography and spatial variability

on hillslope surface properties has been usually considered by the derivation of effective roughness coefficients

using optimization procedures with simulation models. However, as a result of this practice the roughness

parameter becomes model-dependent and may perhaps help to hide errors in model structure.

The conventional resistance equations relating friction coefficients to Reynolds number cannot be used in

general to estimate roughness coefficients under field conditions. Abrahams, Parsons and Luk (1986) showed

that an increase in discharge on a surface with a complex microtopography would result first in a rise of the

friction coefficient, and then, as the discharge and the Reynolds number continue increasing, in a decline of the

roughness parameter. However, Baird,Thornes and Watts (1993) maintain that as long as the hydraulic radius is

properly estimated, rather than being replaced with the average depth, the problem of variable cross section can

be accommodated as it is in conventional river models.

Neural networks have been used in many fields of science and engineering to approximate unknown

nonlinear relationships to any desired degree of accuracy. Schaap, Leij and van Genuchten (1998) used neural

network models to predict saturated hydraulic conductivity and water retention parameters from commonly
measured soil properties. Shayya and Sablani (1999) developed non-iterative neural network models to predict

Darcy-Weisbach and Chezy roughness coefficients using Reynolds number and relative roughness as the

independent variables. It was the objective of this study to develop neural networks to predict hydraulic

roughness coefficients for overland flow models, based on surface and flow characteristics.

Materials and Methods

Experimental Setup

A metal flume 2 m long and 0.5 m wide, with a 1 m long removable central section, was used to carry out the

experiment. Five surfaces with different degrees of roughness were placed on the central section. The surfaces

were shaped using concrete to avoid changes in surface configuration. Surface configurations ranged from

nearly flat to rough (visual perception) and had different degrees of surface storage. Each surface was placed in

the flume and an initial experiment was carried out to find out the relationship between the average flow velocity
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and the velocity of the edge of a cloud of dye. This was done for a range of slopes between 0.5 and 21.1% and

discharges between 0.03 and 0.43 I m''s''.
Once the velocity relationship was known the surface was coated with sand having an average diameter of

0.629 mm (collected using sieves of 0.417 and 0.841 mm openings). The sand was glued to the concrete surfa.ce

(no water repellency was observed due to the glue). After removing excess sand, the surface was scanned using a

laser scanner (Huang and Bradford, 1990). A scan file consisted of 200 longitudinal profiles 2 mm apart, each

one including 900 elevation measurements I mm apart. Following scanning, the surface was placed back on the

flume for collection of flow data. After setting the flume slope and making sure the flow discharge was constant,

a cloud of dye was dropped at the upstream end of the central section of the flume, and the travel time of the dye

edge along a 90 cm segment monitored. A computer automatically recorded the average flow discharge, dye

velocity and water temperature during the time it took the edge of the dye cloud to cover the 90 cm distance.

Dye velocities were subsequently converted to average velocities using the relationships previously derived.

This procedure was repeated for a combination of slopes and discharges. After the flume run, the surface was

allowed to dry and then coated again with coarser sand. Three more sand fractions with the following average

sieve diameters were tested: 1.004 mm, 1.584 mm and 3.334 mm. Twenty different combinations of surface

configuration and sand coating were scanned and tested on the flume.

Data Set

The roughness coefficients were computed from the recorded data using standard procedures:

-R"'S"' (2)

c= Jrs w
where / is the dimensionless Darcy-Weisbach roughness coefficient, n [T L'°] is Manning's roughness
coefficient, C [Ll/2 T1] is Chezy's coefficient, R [L] is the hydraulic radius, S [L L'1] is the flume slope, andF[L
T1] is the average flow velocity. The hydraulic radius was computed dividing the flow discharge by the average

velocity, thus equaling the average depth. The roughness coefficients so computed implicitly account for the

deviation ofthe actual hydraulic radius from the average depth.

Different functions are available to represent the scale-dependent roughness configuration of a surface

(Huang, 1988). Variogram (# [L2]), mean absolute elevation difference (AZt [L]) (MAED), and power spectral

density (C((o) [L2 L rad*1]) (PSD) were computed from the scanned longitudinal profiles. For each combination

of surface and sand coating, the computed functions from the 200 profiles were pooled in a single ensemble

function. A Markov-Gaussian model was fitted, using least squares, to the ensemble variogram, by changing the

values of the parameters o2 [L2] (variance ofthe height measurements) and L [L] (correlation length),

rt=<r2(\-e-"L) (4)

where k represents the lag distance. The linear relationship between l/AZt and \lk proposed by Linden and van

Doren (1986) was fitted to the ensemble MAED by changing the parameters LD [L] (limiting elevation

difference) and 15 [L L'1] (limiting slope),
1111

:+tt:t (5)
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A power function was fitted to the ensemble PSD by changing the parameters B [L2 (L rad'1)0"*1*] andp,

C(o))=Ba>p (6)

where to [rad L*1] is the angular frequency. Both c(a>) and a; were log-transformed before fitting B and p.

The data set consisted of 1827 vectors. Each one contained the following information: surface sand diameter

in mm, o2 in mm2,1 in mm, LD in mm, LS (dimensionless), B in mm2(mm rad')(llP),p (dimensionless), flow
discharge in ml m'1 s'1, flume slope (%), water temperature (°C),/(dimensionless), n in s m""3, and C in m"V'.

Neural Network Models



Feed-forward back-propagation neural networks with one hidden layer were used in this study. This type of

neural network is a nonlinear data transformation structure consisting of input and output nodes connected to a

number of hidden nodes by adaptable coefficients. The number of input and output nodes corresponds to the

number of input and output variables. The number of hidden nodes depends on the complexity of the underlying

problem, and is determined empirically. Each input vector consisted of six variables (six input nodes); six

hidden nodes were used in the hidden layer; and a single node in the output layer yielded the estimated

roughness coefficient. The hidden and the output layers had a sigmoid and a linear transfer function respective ly.

The coefficients were obtained in an iterative calibration procedure, called training, based on theLevenber-

Marquardt algorithm and the minimization of the mean square error objective function, using the neural network

toolbox ofMATLAB (version 5.3, MathWorks Inc). The data set was divided into two subsets. The larger one,

with 80% of the vectors, was used to train the networks and the smaller one was used to test their performance.

Training ofthe networks stopped when the mean square error of the validation set reached a minimum.

Nine neural networks were constructed, three to predict each one of the three roughness coefficients. All the

networks shared four input variables: sand grain diameter, flow discharge, flume slope and water temperature.

One of the three networks used to predict each roughness coefficient used the two variogram parameters**7 and
I as the remaining two input variables, the second network usediD and LS, and the third network used £ and/?.

All the input data and target values (measured roughness coefficients) were normalized so that they had zero

mean and unity standard deviation. The neural network predictions were evaluated in terms of the correlation

coefficient (r) between predicted roughness coefficients and those derived from the flume measurements.

Results and Discussion

The maximum and minimum values of the parameters used to describe the surface configuration are listed in

Table 1. All the surfaces showed different sets of parameters, but only the parameters from the power equation

describing the PSD responded to the differences in sand diameter. BothB andp generally increased with coarser

sand coatings.

Table 1. Value

Minimum

Maximum

ranges for

c? fmm2]

2.43

78.45

the coefficients describing the surface roughness

L [mm]

36.47

163.53

LD [mm]

1.93

10.28

LS B

0.050

0.725

configuration.

[mmz(mm rad"')<l:P>]

0.058

0.440

P

-1.31

-2.40

Computed/coefficients ranged from 0.357 to 90.8 an in general had a linear trend with the logarithm of the

Reynolds number, n coefficients ranged from 0.027 to about 0.48 s m'm, and also showed a linear trend with the
logarithm of the Reynolds number. C coefficients varied between 0.31 and 4.69 mm s'1 and displayed a linear
relationship with Reynolds number. Tap water temperature ranged from 15.4 to 25°C.

Table 2. Summary of results from the evaluation of the nine neural network models.

Surface Function

Output Variable

Correlation Coefficient

Best Linear Fit Slope

Best Linear Fit Intercept

/

0.895

0.811

1.17

Variogram

n

0.939

0.884

0.0102

C

0.948

0.893

0.17

f

0.777

0.562

2.28

MAED.

n

0.925

0.848

0.014

C

0.949

0.894

0.173

/
0.84

0.694

1.52

PSD

n

0.896

0.796

0.0172

C

0.938

0.877

0.204

A summary of the evaluation of the nine network models is presented in Table 2. The relationship between

target and network-predicted roughness coefficients was linear and close to a 1:1 line in all cases except when

the parameters LD and LS were used to predict/ In this case, the network clearly did not perform as expected.

Predictions offand n based on the variogram parameters o* and L outperformed the predictions based on the
other two surface functions. Predictions ofC based on the variogram and on the MAED parameters were equally

good and outperformed those based on the PSD parameters.

The neural networks that predict C coefficients consistently performed better than the networks predicting/*

and n. For all three surface description functions, these networks produced the highest correlation coefficient

between the target (measured) and the network-predicted values, and the slope of the best linear fit was closer to

one. Networks predicting n performed in all cases better than those predicting/ A possible reason for this

difference in performance is that C coefficients are more homogeneously distributed within their range of

variation, while n coefficients, and especially/coefficients, are clustered near the lower end. This heterogeneous



distribution was caused by the relationship that both/and n displayed with the Reynolds number and the flow

discharge. Figure 1 demonstrates this point.

Chezy Coefficients Using Variogram Parameters
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Manning Coefficients Using Variogram Parameters
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Figure 1. Evaluation of the performance of neural networks to estimate roughness coefficients using the

variogram parameters c? and L as input variables: a. Chezy's coefficients, b. Manning's coefficients.

Conclusions

1. Neural networks have been successfully used to predict Darcy-Weisbach, Manning and Chezy hydraulic

roughness coefficients using surface characteristics, flow discharge and water temperature as input variables.

2. Neural networks based on the variogram parameters o7 and L produced better estimates of the roughness
coefficients than those based on the mean absolute elevation difference or power spectral density functions.

3. Chezy's roughness coefficients were more closely predicted by the neural network models than

Manning's or Darcy-Weisbach coefficients.
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