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SIMULATION OF THE SHORT-TIME SCOUR-FILL

PROCESS IN ERODIBLE STREAMS WITH STOCHASTIC

SEDIMENT TRANSFER AT THE STREAM BED

J. Paul Riley , Kousoum Sakhan , and Kenneth G. Rcnard

SYNOPSIS:

In ephemeral streams, the occurrence of translatory waves causes the

shortening of the time of rise of the hydrograph which in turn results in chan

nel instability. A simulation model is developed to describe the dynamics

of the channel in terms of: (1) two one-dimensional stream flow equations,

(2) a one-dimensional sediment transport equation, an equation for the

stream bed, and (3) a stochastic sediment transfer at the stream bed which

also includes the bed load.

The model as a whole is simulated on a hybrid computer. To demon

strate the operation of the model, real-time simulation is done using hypo

thetical data for a stream reach 24,000 feet in length. The results of this

study are presented in graphical form.

1. INTRODUCTION

Existing information is inadequate on channel stability influences in the

Southwest part of the United States. Under present conditions, many stream

channels are unstable. The major cause is believed to be the high-intensity,

short-duration convective thunderstorms, particularly during the summer

season, which result in flash floods moving over coarse-textured alluvial

stream beds with very high-intake rates. It has been observed by Renard and

Associate Professor, Civil Engineering. Utah Water Research Labor

atory, Utah State University, Logan, Utah.

Graduate Research Assistant, Civil Engineering, Utah Water Research

Laboratory, Utah State University, Logan, Utah.

Director, Southwest Watershed Research Center, Agricultural Research

Service, United States Department of Agriculture, Tucson, Arizona.



I!
JS2

Hickok that the occurrence of translatory waves is frequent. This phenomenon

has a critical influence on the time of rise of the hydrograph, which in turn, af

fects the stability of the stream channel. The conventional theory of flood rout

ing has been found to be inapplicable to these <?phomer.il streams. There-lore, it

is necessary to account for the movement of these waves in order for the model

to be descriptive of ephemeral streams, besides these translatory waves, sed-

iemtns carried by the flow both as bed load and suspended load make the situa

tion even more complicated.

It is the purpose of this investigation to develop a simulation model which

accounts for the translatory waves, and sediments entrained by the flow both as

bed load and suspended load, and yet is simple enough for practical uses. The

system reported herein consists of two one-dimensional stream flow equations,

a solid mass transport equation, and stochastic solid mass transfer at the stream

bed.

2. CHANNEL DYNAMICS MODEL

Fluid Mass and Solid Mass Transport Equations

The three dimensional equations of conservation of fluid mass, flow mo

mentum, and solid mass in the turbulent flo'w are

P gjr = pg - V p + |i v2 9 + [V • T^]

|| + v ' (c?) = v • (eve)

subject to the following boundary conditions (Figure 1)

|£ + V • VF = ft ■ vF

c |i- - e vc • vF = (I • vF + c ft • vF

(1)

(2)

(3)

(4)

(5)

where T is the Reynolds stress tensor and F(x, y, /., t) = 0 is the equation

of the moving boundary surface. After space averaging, Equations (1), {£) and

(3) reduce to the following one-dimensional equations which describe the con

servation of fluid mass, flow momentum, and solid mass in the flow of natural

streams with movable boundaries,

at ax L (6)

Renard, Kenneth G. , and Hickok, R. B. , "Sedimentation Research

Needs in Semi-Arid Regions, " Proc. of the ASCE, Vol. 93. No. HY1. pp. 45-60,

January, 1967.
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' A} + 9 ~ (hcA) ♦ gA |i + ^ - I (L+s) = 0 (7)

h <«» - fr (Ge A |£) - C/ [S ♦ T |f] - N = 0 (8)3t vv-"' ' 3x v"" " 37 vucx

where the terms L, S, and N. as described in the terminology, have negative

values if processes they rcprcsnet are influent, and positive values if processes

are effluent. The scour-fill equation for the stream bed is

<•>

In natural streams, different bed configuration occurs depending upon

the flow characteristics. Therefore, the friction factor, f, which appears in

Equation (7) is by no means invariant. This friction factor can be decomposed

into f which represents the sand grain roughness and f" which represents the

bed form roughness. These two friction factors arc represented by the follow

ing equations

f = 1/ [2 logi0 (2 Rh/050) + 1.74P (10)

log10 f" = - .45 - .04 —^—- + (.04 —^— - 3.05)

exp - 8 [logio JL- - (1.9 + .04 —^—)] (H)
5 0

In the equation for the suspended sediment (Equation (8)), two variables

must be determined: (1) the longitudinal sediment dispersivity Gcx, and (2) the

sediment transfer rato N at the stream bed.

Following Chen and assuming logarithmic velocity distribution in both

vertical and lateral directions, the longitudinal sediment dispersivity can be

derived and expressed as:

in which X is the ratio of the eddy mass diffusivity to the eddy kinematic viscos

ity of water, k is the von Karman universal constant, h is the depth of flow, T is

Chen, C. L. , "Dispersion of Sediment in Flow with Moving Boundaries, "

accepted for publication in the Proc. of the ASCE, Hydraulics Division, 1971.
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the top width of flow, and rio and |o are the distances from the stream bed and

the side walls, respectively, where the velocity is aero.

The rate of transfer of sediment N should be described by a stochastic

process as a result of the random nature of the driving mechanism which is

the flow turbulence. This process is treated in the folluwinn section.

Stochastic Sediment Transfer at the Stream Bed

It is proposed that at the interface between the flow region and the stream

bed, there are three distinct states and at time, t, a solid particle may be in

any one of these three states. The three states arc: © the suspended load
state, @ the bed load state, and (c) the immobile bed state (Figure 2). The
probability that a particle will move from one state to another or remain in a

particular state is termed its transition probability. The future transition

probabilities of a solid particle are independent of its transition probabilities

in the past (a property of the Markov processes). For example, if a particleis

in state ©at time « and in state (§)at time % the probability that is in state (c)
at time t is given by the appropriate transition probabilities as follows:

:) (13)
PAC = P

AB PBC

Generally, since the events corresponding to Equation (13) for different

middle states are mutually exclusive, then the probability of going from state

at time U to state (5) at time t is

PAC (6«tJ PAi PiC (14)

Equation (14) is the Chapman-Kolmogorov equation for a non-homogeneous

Markovian process. If it is defined that

*.„ fit + 0 (fit) = P {a particle in state ©at time i. will be in state (g)
Ad *

at time 5 + At) (15)

i^AC At ♦ 0 (it) - P (a particle in state ©at time t. will be in state (c)

at time c, + fit) (16)

and

1 + ifrj. fit + 0 (fit) = P (a particle in state (a) at time t will remain

in state A during the interval U, (, + fit))(17)
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then it is clear that

C

1 =o

If *AA is zero, then state (a) is absorbing, that is, the particle is always
in suspension. This case is not expected to happen for dense solid particles

wandering in a natural stream.

Now consider two contiguous time intervals, (8. t) and (t, t + At). Using

the definitions in Equations (15) through (17) with Equation (14) yields

PAA (e, t + At) = P^ (e,t) (1 + *M At) + pab (e,t) *BA fit

+ PAC (e,t) *w At ♦ 0 (at) (19)

PAB (e. t + At) = PM (e,t) «AB At + P^ (e,t) (l + *8B At)

+ PAC (e,t) ri<CA At + 0 (At) (20)

and

PAC (e, t + At) = PM (e,t) *AC At + PAQ (e,t) *BC At

+ PAC (e.t) (1 + *cc At) + 0 (At) (21)

Dividing Equation (19) through (21) by At and taking the limit as M ap

proaches zero results in the following relationships:

at

at

PAA (e'(

PAB <9''

:) = paa (e,

:) = PM (e,

,t) *M(t) h

,t) ^(t) <

hPAB

^PAB

PAC

PAC

P

(e

(e

(•

,t)

.t)

,t)

(22)

(23)

(24)|f pac (e.t) = paa (e.t) *AC(t) + PAB (e.t) *BC(t)

Equations (22) through (24) are known as the forward Kolmogorov differ

ential equations. They are subject to the following initial conditions

PA1 (0.6) = «Ai, i = A, B, C (25)

where & ^i 's tne Kronecker delta symbol.
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The +'s are the intensities of solid mass transfer which are the main keys

to the concept of stochastic solid mass transfer at the interface. They are

functions of the instantaneous local hydrodynamic properties. Considering

that the time interval (O.t) is very short, then it can be assumed that the 4-'s
are constant over this interval. However, in general the +'s are time-depend

ent.

The Kolmogorov differential equations for PBA. pBB' PBd PCA> PCB'
and PcC maY be derived in a similar manner and presented in matrix format.

Let the transition probability matrix be

PaB^6'0 PAC{e't}
PBB (e.t) PBC (e.t) | (26)

CA (6>t) PCB <6tt) PCC {6it)i

and let the solid mass transfer intensity matrix be

'a b

(27)(t) =

A

B(1
C

1 AA
r

V*CA

(t)

(t)

(t)

*AB

*BB

*CB

(t)

(t)

(t)

Then the Chapman-Kolmogorov equation becomes

P (e.t) = P (e.t) P (e.t) (28)

In a similar manner the forward Kolmogorov differential equations become

f^P (e.t) =P (e.t) % (t) (29)

subject to the initial conditions

P (e.t) = T (30)

where I is the identity matrix.

16.6
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jrio ,C u ' n°W> ." tO dctermine the ^tensity matrix * (t). Referring to
Figure 2. there are .ix from-state-to-state transfers and three within-state
transfers. The terms state and Zone should not be confused. With the com-
plexity regarding the arrangement of solid particles at the interface and the
instantaneous local hydrodynamic forces, it is impossible to draw a nhvsical
boundary between the bed .oad zone and the suspended load zone! However it
u-possible to avoid this problem by considering" states of a solid particle which
do not have phys.cal boundaries, but rather "process boundaries" The process
boundary are defined by the following relations (31) through (36) which define

- Transfer from suspended load state to bed load state occurs when the
local upward hydrodynamic force F (v' ) is less than the vertical
resisting force Fy (m) due to solid mass.

Fy (V" up' ^ Fy M (31)
- Transfer from suspended toad state directly to immobile bed state

occurs when

Fy (V' up) 1 'y W (32)

- • Transfer from bed load state to suspended load state takes place when

Fy (V up) > Fy (n,) (33)

- Transfer from bed load state to immobile bed state occurs when

Fx (t°' u<) 1fx (". t0) (34)

(CA) - Transfer from immobile bed state directly to suspended load takes olace
when r p ace

Fy (V< up) > Fy M (35)

- Transfer from immobile bed state to bed load state occurs when

Fx (tQ. «') > Fx(m. to> (36)

As can be seen from Equation (18). within-state transfer are functions of
transfers between states.

Let "forward be the forward velocity of the particle at the interface regions,

16.7
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and v • and vfa,i, the rise and fall velocities of the particle, respectively. If

a sediment particle moved with one of these three velocities, how many fictitious

sediment particles similar to that real particle would move at maximum intens

ity, past a single "serving counter" per unit time? Let D be the diameter of

thep.irticle. Then there should be. for example. uforward/ D particles per unit

time which move in the forward horizontal direction. Under this concept, the

intensity function matrix (27) becomes

$ (t) - B

"fall 'fall

'rise

Vise

'fall

forward rise "forward)

D )

(37)

subject to the process conditions (31) through (36). The entry which does not

satisfy its respective process condition vanishes.

In order to evaluate the above matrix the three solid particle velocities,

"forward- vrise- and vfall> must be determined. In natural streams, various
bed configurations are formed, depending upon the flow conditions, the charac

teristics of the bed material, and the stream geometry. In turn, bed features

affect "wall" turbulence near the bed, which is a primary entrainment mechan

ism for solid particles. Another important entrainment mechanism is the mean

bed shear stress. In the interface region of natural streams, the Newtonian

law of motion is valid. Thus

= bt <■ V (38)

in which F* is the total force vector on the particle; m is the mass of the particle,
which is constant; and Vp is the velocity vector of the particle. Integrating

Equation (38) from time t. to time t. yields

/** f* dt - m V_ - H ? (39)

where / c F dt is known as the impluse of the force F on the particle. Decom

posing the force F. into two parts, the hydrodynamic force, Fhv(jr0, and the

resisting force, Fresi8t, and integrating Equation (39) over the entire surface,

A , of the bed feature yields

16.8
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'a '1; '^ist dtd* = » 'A <V " V

Let F F . (V-, - Vp ) and A be the averages of Fh .
l"el hydro resist P2 ri . . _.' ,-_

isf (VP2
(40) becomes

F (V - V ), and A and t in the domain, respectively. Then Equation
resist' P2 Pi

A <t2 - t,) (Fhydro + Fresist) = Am (?p2 - *pi) (41^

In natural streams, the longitudinal and vertical motions of bed particles
usually the predominant processes. Hence, from Equat.on (41).

and

RVP = (7p7n^) = ^ (TMro , + Resist y)

where up and v are the relative longitudinal and vertical particle velocities.
Th* time of action (tj-ti) of the summation of forces (Fh dro + *resist/
assured -"In be deduced from the reasoning to obtai/the intensity function
matrix (37), to be:

t2 -

"Pa 'Pi'

sitive, the plus and

Substituting Equation (44) into Equations (42) and (43) yields

2 D ,7 + T ) (45)
* up i (Fhydro x ^resist x1

and o - i (46)
1 vp = i (Fhydro y + Fresist y>

16.9



360

Considering the fact that solid particles are sheared over a gravity bed

in order to move in the longitudinal direction, one would expect that the particle

to particle interaction is far greater in the longitudinal direction than in the

vertical direction. Then the longitudinal resisting force for a spherical particle

can be expressed as

Resist x = -K^iD3tan° (47)

in which tan a is the dynamic friction factor, which as a result of Bagnold's

experiments can be expressed as

Y , D2 t0

tan a = .375 + .375 exp [ - .00084 ( ^ ^ - 100)] (48)

Since the particle to paricle interaction is negligible in the vertical direc

tion, the vertical resisting force is due only to the submerged weight of the

particle, or

Resist y " - K " *> f °3 (49)

The total hydrodynamic force is the mean bed shear stress, - pu'v1, super

imposed by forces resulting from turbulent fluctuations u* and v'. Thus,

CDx J <^2 - ^ (50)

and

in which Cj-^ and CDy are the drag coefficients in the longitudinal and vertical

directions, respectively, and v'|- is the mean-square of the upward velocity

fluctuation. If asymmetry of turbulent fluctuations is assumed to exist at the

stream bed, then, for a maximum local momentum flux, the upward fluctuation

can be derived and expressed as:

2.415 V77 (52)

Bagnold, R. A., "Flow of Conesionlesa Grains in Fluid", Royal Society

[London] Philos. Trans., Vol. 249. pp. 235-297, 1956.
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Now let 4«x and 4» v be the correlation functions between the root-mean-

square velocity fluctuations* u'^ andV v'2 and the root-mean-square shear

velocity" -u'v1, or

(53.a)

u'v1

and

" u'v1

Substituting Equations (47) through (53) into Equations (45) and (46) yields

± u_2 = 3/4 g — ($2 + 1) t0 - g D (-*—) tan a (54)
Yr-Y

u 2 = Vd a -Hi. f*2 + 1) i. - O D
P

J

and

Dv i r\ / s \ /c%f^

in which t o is the mean bed shear stress (-pu'v1).

The correlation functions *xand+y are functions of the friction Reynolds

number (Laufer^) or

*x = 2.5 - 2.5 exp (- .322-V^D/v) (56'a)

and

* = 1.0 - exp (- .0525VT /p d/v) (56.b)

Equations (54) and (55) provide estimates of the three particle velocities

required for the intensity function matrix (37). The Kolmogorov differential

equation (29) then can be integrated to obtain the probability for each process.

Once the probability for each process is obtained, the concentration, the

rate of transfer, and the volume rate of flow of the sediment at the stream bed

7Laufer, J., "The Structure of Turbulence in Fully Developed Pipe Flow. "
National Advisory Committee for Aeronautics, Technical Report 1174, p. 17, 1954.
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are given, respectively, by:

C (t) = C. (t-«t) PflR (t-l/26t) + Cf (t-6t) PCB (t-l/26t)

- CB (t-6t) [PBA (t-l/26t) + PBC (t-l/26t)] (57)

N(t) = — / BD50 Cr (t-6t) [\i-CB (t-l/26t) PCB (t-l/26t)

+ *CA (t-l/24t) PCA(t-l/26t)] - CA (t-6t) K,AC(t-l/26t)

P.,. (t-l/2«t) - CD (t-6t) i(iBr (t-l/2«t) PRr (t-l/26t)> (58)
AC b dl ov j

and

QD ...,(t) = /bD50 Cr (t-U) *rft (t-l/2«t) PCB (t-1/26t)!B volltJ "/ BUso UC lt""J *CB ^-|/"1' rCB

x i,. ii-»i| y*r, ik-ift«i.i • Ag (t-l/26t) "^g (t-St)

C*ra (t-l/24t) PB. (t-l/26t) + *BC (t-l/26t) PBC (t-l/2«t)]y(59)
DM Drt uv ^

Since the elevation of the stream bed is a function of both the rate of

transfer of sediment between the stream bed and the bed load state and the

stream bed and the suspended load state, Equation (9) can.also be written

r/ t in + JL (Qn , + QD ) = 0 (60)
L'y=n at )x VWB vol % exc'

where

#•» - i- /bDS0 Cr (t-6t) [*„ (t-l/26t) Pm (t-1/26t)
ax l «» "* *■*

*r4 (t-1/26t) Pr. (t-1/26t)] - CA (t-«t) *AC (t-l/26t)

(t-6t) *BC (t-l/2«t) PBC (t-V26t)J (61)PAC (t-l/2«t) - CB (t-6t) *BC (t-l/2«t) PBC

Completing the formulation, the mathematical model of the scour-fill

process in erodible streams can be visualized by the illustration in Figure 3.

The particle diameter, D, used in the development of the stochastic mod

el is for homogeneous bed material. For heterogeneous bed material, the mean

particle diameter should be used.

Having arrived at this point, a question still remains. Is the Kolmogorov

system (29). which described Markovian processes with time-dependent transi

tion probabilities, a valid system to describe the stochastic sediment transfer
at the interface; in other words, is the time spent within each state and from

state-to-state exponentially distributed? Exponential distribution is a neces-

sary, though no sufficient, condition of a Markov process, jind since the time
of particle stay or transfer is a function of the instantaneous particle velocity,

this velocity has to possess a distribution which belongs to the exponential

family.

16.12
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To sec that th_£ instantaneous particle velocity, Vp, has an exponential

distribution, let F(V ) be its distribution function with a range, p, or

F (Vp) = /r f (tfp) d ?p (62)

Going back to Equations (55) and (56) it can be seen that, at the interface,

(63)- ♦"'a tf2 ♦ b, % = -''a 1* * b

in which a and b are coefficient s_calars. Equation (63) indicates that the density

function of the random variable V is a double-valued function. Therefore, the

density function f(Vp) can be obtained by partial differentiation of Equation (62) as

3 F(l)

«1p) (64)

At the stream bed, the fluctuating velocity V has a nearly Gaussian distri

bution. Hence,

1
exp

-V')*

and

exp
71)

(65)

(66)

where <y^^ is the standard deviation of V about its mean V!

Differentiating Equation (63) with respect to Vp yields

"p
s

a'c V* * d (67)

in which c and d are coefficient scalars. (See Equations (55) and (56)).

Then substituting Equations (65), (66). and (67) into Equation (64)jrields

(?' - ?')

«v ■ £ + exp

2 o2rt,

(68)

16.13
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Equation (68) indicates that f(V ) has a Gamma distribution which belongs

to the exponential family, and therefore suggests that it might be described by

a Markovian process with discrete states in continuous time. If this is the ca6e,

the Kolmogorov system (29) is a valid description of stochastic sediment trans

fer at the interface as was assumed in the development presented herein.

3. METHODS OF SOLUTION

The essence of the model developed in this paper is to obtain the solution

to systems of equations: (1) one-dimensional equations based on the conservation

of fluid mass, flow momentum, and sediment mass in the flow, and (2) the

Kolmogorov differential equations.

To obtain a high-accuracy approximation in the solution ot Equations (6) and

(7), the one-step Lax-Wendroff is adopted. Equations (6) and (7) are rewritten

in the following form:

I = 0 (69)

where

, F(iJ)
-L -S

(70)

The vector W can be expressed in Taylor series as follows:

At <W) (71)

Since this is an explicit scheme in time, t, the second order term is pre

served in order to obtain high order accuracy. Equation (71) can also be written

(72)

in which Jp and Jj< are the Jacobians of F(W) and K with respect to W, respec-

16.14
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tively. or

(73)

- u2 2U

and

as

3A

3A

Q2 3f

8 ARk 3Q

(74)

All space derivatives are approximated by centered differences. Using

the von Newmann stability criterion, it can be shown that the following condition

must hold for stability in the solution

^ < 1
(75)

Characteristic of the Lax-Wendroff scheme is the presence of short-wave

oscillations behind the shock front, particularly when the shock is strong. .If
these oscillations are allowed to be carried with the computation long enough,
they might cause the solution to explode. Therefore, it might be necessary to
add. in some cases, a filtering term or artificial viscosity to Equation (72) to

minimize these oscillations.

The solution to the suspended sediment Equation (8) can be approximated

by the following explicit difference scheme

at ((Gcx "\+\ + ex- 1 i+' * cxi

1

(76)

x At cb- si" fe (Qb " Qb

In most practical cases. Equation (76) is of positive>tyPe; and. therefore,

it is always stable.

The Kolmogorov system (29) which consists of nine ordinary differential

equations, is solved directly on the analog computer. As far asjSftablfl'ty 'n.th^
solution is concerned, the analog technique is particularly suited for the Kolmog-

16.15
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orov system because the intensities of sediment transfer within each state are

negative. This causes the errors associated with the computation to decay ex

ponentially with time. The analog diagram for this system is shown in Figure 4.

4. HYBRID COMPUTER EXPERIMENTS

The model as a whole is being synthesized on a hybrid computer available

at the Utah Water Research Laboratory. The model will be tested by simulating

conditions within an ephemeral reach of the Walnut Gulch Watershed in southern

Arizona. This is a highly instrumental watershed operated by the Southwest

Watershed Research Center, Agricultural Research Service, Tucson, Arizona.

Measured input and control data will be used for calibration and testing of the

processes modeled, and the model subsequently will be used for preditive pur

poses on this watershed.

Since field data are not yet available hypothetical input data are used to

demonstrate the operation of the model. The movement of flood wave and sedi

ment is simulated in a reach which is 24, 000 feet long. This reach is divided

into 20 space intervals, each 1,200 feet long. To stay within the stability limits

of the difference equations used, the time increment is taken as one minute. The

average slope is about . 005.

With the input hydrograph as shown in Figure 5, the wave reaches the down

stream end after 35 minutes. It is attenuated to about half the size of the input.

This is due mainly to the high intake rate of the stream bed. Figure 5 also shows

that the peak of the hydrograph occurs at about the same time as the peak of the

suspended sediment graph, while, as expected, the peak of the bed load graph

lags behind the hydrograph peak. These phenomena are illustrated by Figures 6,

7, and 8, which show the profiles of the water discharge, bed load discharge,

and suspended load discharge, respectively.

A sample of the probability profiles is shown in Figure 9 for the transfer

of sediment from immobile bed state to bed load state. The profiles tend to

have relatively flat lee-side slopes which are similar to those of the velocity

profiles.

5. SUMMARY

A mathematical model of the sediment transport process in ephemeral

streams is presented. The main advantage of the approach adopted is that the

problem of separating bed load from suspended load is avoided by dealing with

states of occurrence rather than physical zones. Stochastic processes are used

to describe sediment transfer between states.

v

The model is being synthesized on a hybrid computer. It was found that the

computational schemes used are stable. The term associated with the friction

factor in the equation of momentum controls the stability in the solution. The

16.16
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responses of sediment load to change in water discharge are as expected. The

suspended load tends to change instantaneously with the water hydrograph, while

there is some lag in the response function associated with the bed load.

PARTIAL LIST OF SYMBOLS

Symbol Definition

A Cross sectional area of flow

A Cross sectional area of the stream bed
C

(A) Suspended load state at the interface

^}) Bed load state at the interface

(g) Immobile bed state at the interface

C Overall average concentration of suspended sediment

C Specific weight of the bed material
C

C Concentration of sediment at state i at the interface
i

C/ = C Bed load concentration

y=n B
c Point sediment concentration in 3-dimensional field

C Drag coefficient
D

D Sediment diameter

D Median sediment diameter

e Mass diffusivity in the 3-dimensional field

f" Vector force on the particle

F(x, y, z, t) = 0 Boundary surface in the 3 dimensional field

f Friction factor

p Friction factor due to grain roughness

f" Friction factor due to bed forms

G Longitudinal solid dispersivity

—cx
g" Gravitational acceleration

h Flow depth

h Depth from free stream surface to centroid of flow cross

c sectional area v

I Intensity of turbulence

I Identity vector

L Lateral flow into or from the channel per unit length

16.17
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Partial List of Symbols (Continued)

Symbol Definition

irt Mass of solid particle

N Local total sediment transfer rate at the stream bed

P Probability that a particle moves from state (A) to state (B)
AB

Porosity of the bed at static state

p Point pressure

Q Total fluid discharge

r" Vector flow across stream boundary surface

r Hydraulic radius

S Total seepage into or from the channel bed per unit length

T Top width of flow

f(e) Reynolds stress tensor

U Mean stream velocity

U* Friction velocity

\F Temporal average fluid velocity vector

"yi Temporal fluid velocity fluctuation vector

V* Solid particle velocity vector at the interface
p

ui# vi Turbulent velocity fluctuations

a Average angle of encounter between individual particles

a Momentum correction factor

y Fluid specific weight

y Solid particle specific weight

5 Kronecker delta symbol

•n Stream bed elevation above some datum

Fluid dynamic viscosity

u Fluid kinematic viscosity

p Fluid density

a Solid particle density
r s
T o Bed shear stress

dT Vector intensity of sediment motion at the interface
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p(x,y.z.t) = o

Figure 1. Illustration of a stream cross section.

Suspended load state

B ) Bed load state

Iimtobile bed state

Figure 2. Illustration of solid mass transfer at the interface
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Figure 4. Sample analog diagram for the Kolmogorov System.

Olsunte: 24.000 ft.
Avcr«9t slope: .MS

Hem scdicent dfgaeter: .003 ft

Oarcy'i K: .0003 ft/see
Bottom width: SO ft

.5

S 10 15 » 25 30 3S 40 45 50 K 60 65 70 75

Ttn-Hlnutes

Figure 5. Inflows and simulated outflows
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3.0

2400 4800 7200 WOO 12000 14(00 16800 19200 21600 24000

Distance down the channel reach* ft

Figure 8. Suspended load profiles

2400 4800

I t-

7200 9600 12000 14400 16800 19800 " 21600 2*000
Distance down the channel reach, ft

Figure 9. Profiles of the probability of the transfer of sediment
from the immobile bed state to bed load state, PCB.
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