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ABSTRACT: Many engineering systems are affected by uncertainty in future demands or inputs.

Decisions regarding their design, however, typically must be made in the present. Two-stage stochastic

programming can consider this type of problem but, in the past, procedures to fully incorporate the

uncertainty have come with a high computational cost. New algorithmic developments, such as

Regularized Stochastic Decomposition (RSD), now allow more complex systems to be considered. This

paper provides an overview of the RSD method and its extensions and demonstrates the application of

two-stage stochastic programming to two water resources problems with different problem structures and

types of uncertainty.

1 INTRODUCTION

Design and analysis of engineering systems

usually involve many uncertainties. Oftentimes,

these uncertainties are neglected because they are

not known, their values are low, or the uncertain

parameters play an insignificant role in the

process. However, when uncertain parameters

can significantly affect the design, their

uncertainties must be taken into account.

One way to account for these uncertainties in

mathematical programming models during design

is to use a probabilistic representation instead of

the best estimates of the uncertain coefficients.

Some versions of this type of model, were

introduced in the late 1950's by Charnes and

Cooper (1959). One such approach is chance

constrained programming that is widely used for

design problems.

Many engineering applications, however,

involve design and operation decisions, such as

irrigation canal layout and water allocation. These

problems can be formulated as two-stage programs

that consider the future system operations when

making design decisions. The uncertainties are

accounted for by assigning a probability

distribution to the uncertain coefficients.

Although this approach is well known in the

area of operations research, it has not been

broadly applied to hydraulic and water resources

engineering problems. This paper describes and

applies one of the more recently developed

algorithms to solve two-stage stochastic linear

programs with recourse. Higle and Sen (1991)

introduced the Stochastic Decomposition (SD)

approach that combines the strengths of

decomposition based algorithms and stochastic

gradient methods.

SD produces a piecewise linear approximation

of the objective function, then solves one

subproblem and one master program at each

algorithm iteration. A major problem with SD is

that the master program progressively increases in

size of as a result of a new cut (constraint) being

added during each iteration. This problem can

result in severe computational effort, especially

for large problems with many random parameters.

Recently, Yakowitz (1994) introduced a

quadratic regularizing term in the master program

that limits the movement of the Master problem

solutions so that the function estimates remain

adequate. In this procedure, the size of the master

program can be limited by introducing a cut-

dropping scheme similar to that given in Mifflin

(1977) and KiweU (1985).

Regularized Stochastic Decomposition (RSD),

has been applied to solve simple engineering

applications under limiting conditions. The
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present work employs this approach and modifies

it so that it can be applied to a wider and more

practical range of applications. Two applications

are presented to demonstrate its capabilites.

2 BACKGROUND

Two-stage stochastic LP with recourse problems

have a first-stage set of decisions that must be

made at present. The set of second-stage variables

are determined in the future based on the actual

future conditions while satisfying restrictions

resulting from the first-stage decisions.

A general formulation of this type of problem

is:

Mm fix) ' ex*

s.t.

where

SJ.

pnf

Min qy

Wy = u - Tx

(1)

(2)

(3)

(4)

The problem consists of: [1] a first-stage

objective function, ex, with its associated nl first-

stage decision variables, x, and ml first-stage

constraints, and [2] a second stage objective

function Q(x,cr), with second-stage solution y of

n2 variables, and m2 second-stage constraints

based on some observation w. The random

vector, gj, is defined on a probability space

(O,A,P) where II is a compact set. The

distribution probability function, Fo, is associated

with gf, and EJ.] is the mathematical expectation

with respect to w. The set of feasible first-stage

decisions, X, is assumed to be convex and

bounded. With these conditions, the total

objective function is a pieccwise linear convex

function of x.

3 SOLUTION ALGORITHM

At each iteration of the RSD algorithm, one

Master Program and one second stage Subprogram

is solved. The Master program consists of the

first stage objective and a pieccwise linear

approximation of the expected second stage

objective. First stage constraints include cutting

planes developed in the second stage problem.

The second stage program is solved at the

present best Master program solution for the

optimum future decisions at a realization of the

uncertain coefficients. The new candidate solution

is compared to the current solution and accepted

or rejected. Iterations continue until the algorithm

terminates by satisfying appropriate stopping rules.

The steps required in the algorithm are briefly

listed below:

Step 0. Initialize with a feasible current first

stage decision (e.g., optmal solution using the

expected values of random variables) and set the

candidate first stage decision equal to the current

first stage decision.

Step 1. Randomly generate a single observation

of all random variables according to their

distributions.

Step 2. Solve the second stage problem that

results from Step 1 at the candidate first stage

decision and save the solution.

Step 3. Estimate the cutting plane at the current

first stage decision to be added to the Master

program using the current and past solutions to the

second stage problem.

Step 4. Determine if the objective estimate at

the candidate solution is significantly lower than

the estimate of the objective function at the current

first stage decision. If so, the candidate becomes

the current solution.

Step 5. Update, re-evaluate, or eliminate past

cutting planes and solve the current Master

program.

Step 6. Determine if the stopping criteria are

met. If so, stop. Otherwise, return to Step 1.

The algorithm was coded in Fortran so that any

two-stage stochastic problem can be solved

without changing the code. GRG2 (Lasdon.

1985), a nonlinear programming model, was used

to solve the master problem at each iteration.

GRG2 applies the generalized reduced gradient

method as a basis for solving the NLP.

4 RSD EXTENSIONS

The RSD approach, to date, has been limited to

solving linear two-stage problems with uncertainty

only in the RHS of the second-stage constraints.

Since many engineering problems behave in a

nonlinear manner, the algorithm was modified to

handle nonlinearity of the first-stage objective

function. In this case, the convexity assumption

is violated. Therefore, global optimality of the

optimal solution is no longer guaranteed.
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However, local optimal solutions are often

adequate in engineering practice. Prudent

selection of the initial point can potentially

improve the solution and bring it closer to the

global optimal solution.

The nonlinearity in the first-stage objective is

introduced by including the nonlinear function,

g^, in the objective of the master program.

Cuts are identified in the same manner as the

linear first-stage problem, however, they now only

approximate the second-stage stochastic function.

The second limitation to practical

application of SD and RSD is the requirement of

deterministic coefficients in the second-stage

objective function. These terms can include future

revenues and/or prices that may also be uncertain.

The algorithm was successfully modified to handle

these uncertainties. However, computational

problems during implementation point out the

difficulty of its practical application. Details of

the RSD and its extensions can be found in

Elshorbagy et al (1995). Two applications are

presented in the next sections to demonstrate the

utility of RSD to water resources and hydraulics

problems.

5 REGIONAL WATER SUPPLY PLANNING

Consider a region which has two communities.

Each community has demands for both potable

water for municipal use, and reused water for

irrigation and other purposes. The goal is to size

the water supply facilities required to satisfy

consumer demands over a 20-yr period. Potable

water demands can be met by direct supply from

the aquifer and/or treated water from the water

treatment plant which is supplied from a surface

source (Figure 1). The demands of reused water

can be also met from direct supply from the

aquifer or from a tertiary treatment plant which is

supplied from a secondary wastewater treatment

plant. The aquifer is recharged through a

infiltration basin system with water from the river

or the wastewater treatment plant after secondary

treatment.

The planning problem is to determine the

design capacities of the recharge basin, water

treatment plant, secondary wastewater treatment

plant, and tertiary treatment facility. These

decisions represent the first-stage decision

variables in the two-stage formulation. The

second-stage variables represent the water

allocations (in million gallons per day, mgd) from

vRiven'V

ylO yil

Figure 1: Regional water supply system

the supply facilities to different users during

different time periods. The variables y, to y17,

shown on the system outline of Figure 1, are the

second-stage operation variables for the first

period. The total number of the second-stage

variables for the two periods is 34.

The first-stage objective function represents the

present construction cost of the four supply

facilities. The second-stage objective represents

the expected value of the uncertain future

operation costs. These costs result from treating

and pumping water during the two 10 year

periods. They are assumed to be linear functions

of the amounts of treated and delivered water,

respectively, and were brought to a present value.

The structure of the water supply planning

problem, given in the two-stage formulation, can

be written as:

MIN

4

Evi 6.U5*36S*

(5)

Subject to

First-stage constraints

x, t 0

i
v-l

fc{l,4J (6)
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Second-stage constraints (For ( = 1,2)

[1] Canal Capacity

[2] Water Availability

E

le (1,41 (7)

(8)

[3] Potable and Reuse Demands

£ y{ ♦ eu* t DU,
-u

[4] Aquifer Storage

-<? -<

[5] Quality of Reuse Demands

e-o.

[6] Quality of Potable Demands

y< fc PCP * DP1, v=U (13)
H--P,

[7] Temporal Continuity

(14)

(12)

[8] Mass Continuity

(15)

where x, is the design capacity of the supply units

with x,, x2, X), and x4 being capacities of the

recharge basin, water, secondary, and tertiary

treatment.plants, respectively, q,1 is an objective

function coefficient related to the allocation, y,1

(the superscript 1 means the first period), and

depends on its treatment and pumping costs. qe is

a unit price of the penalty water used to maintain

feasibilty. The first-stage constraints are only

simple bounds to maintain non-negative values of

the capacities. The subscript of y on the second-

stage constraints identifies the allocated water.

For example, y^,, defines all y's entering unit U,

and Vq^,, defines the allocated water from unit Q

to unit Ul. The second-stage constraints, are

divided into eight groups as follows:

[1] Capacity constraints ensure that the total

delivered amount of water to any unit during any

time period, g, will be less than the capacity of

the unit.

[2] River Availability constraints ensure that the

available water in the river, AV, exceeds the

amount diverted to the system during any time

period.

[3] Demand constraints guarantee that the potable

demands, DP, and the reuse demands, DU, are

satisfied for the two communities during any

period, £. ep, and eu, are external penalty water

required to maintain feasibility during random

generated constraints which may cause the demand

to exceed the supply.

[4] Aquifer Storage Constraints assure that the

amount of water stored in the aquifer at the end of

each period is greater than a pre-specified reserve

amount, QS. The amount of stored water equals

the initial storage, QI, plus entering water minus

withdrawn water plus external penalty water.

[5] Reuse Quality Constraints maintain a pre-

specified ratio of the total reuse demands, PCR,

to be direct supply from the aquifer.

[6] Potable Quality Constraints maintain a pre-

specified ratio of the total potable demands, PCP,

to be delivered from the water treatment plant.

[7] Temporal Continuity Constraints insure that all

demands and losses are met using true sources of

water.

[8] Mass Balances Constraints preserve the mass

balances at different nodes and accounting of their

losses. The nodes of concern are the supplying

units and the two nodes of potable demands (P).

The total number of second-stage constraints in

this problem is forty two. The stochastic

parameters in the right hand side (RHS) of the

second-stage constraints are AV, DP, and DU.

The number of independent random parameters

considered in this case is 10. Stochasticity in the

treatment costs of the four supplying units along

with the pumping costs, are also considered which

represent eight independent random parameters.
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5. 1 Results and discussion 6 IRRIGATION CANAL SYSTEM DESIGN

5.1.1 Linear first-stage objective function and

stochastic RHS

The design capacities for this condition were

obtained in 15.75 hours using a SPARC-station

LX computer system. The four capacities

obtained using this design were larger than those

of a deterministic design but provided an overall

5% improvement in the total objective function.

5.1.2 Non-linear first-stage objective Junction

and stochastic RHS

To introduce nonlinearity, a power function was

used as the first-stage objective function. Designs

were determined for two values of the power

function exponent. Facility components were

enlarged when a concave objective was used

(power coefficient = 0.80) while they were

reduced in the convex case (power coefficient =

1.5). This result is expected due to the economy

of scale with a concave objective. In both cases,

the optimal solution was improved compared to a

deterministic design with the same objective with

11 and 23% gain for the concave and convex

objectives, respectively.

5.1.3 Linear first-stage objective junction and

stochastic second-stage objective junction

The solution for this case was identical as that

obtained from a deterministic model. Thus, the

variability in the objective coefficients had no

effect on the first-stage decisions for this example

which is not expected in all cases.

This solution was found after a large number of

algorithm iterations that required significant

computation time. The cause of this problem was

that the number of vertices was growing with the

number of iterations. The vertices are related to

the number of independent dual variables that are

possible in the subproblem. Stochastic RHS

problems have a finite number of these vertices,

so convergence is possible. The growth in dual

variables, however, was not expected nor reported

in the literature when stochastic objective

coefficients are considered. Numerous

unsuccessful alternative schemes were developed

to alleviate this problem.

Canal capacities of an irrigation system have a

great impact on future farm revenues under

different operational conditions. Allocation

models, developed to plan for the most economical

way of distributing water to crops at different

growth stages, are all constrained by predefined

canal capacities. Using RSD, it is possible to

determine the best canal capacities during the

initial design stage while considering varying

operation conditions.

A demonstration system consisting of 9 canals,

6 fields, and one source of water is considered.

The planning horizon was 10 years with two 6-

month growing seasons in each year. Figure 2

shows the outline of a symmetrical branch system

of canals and the crops grown in each field during
each season.

Figure 2: Application irrigation system

The first stage represents the canal construction

cost. Linear construction cost functions were

applied and reflect their dependence on the canal

length and the excavation cost. The second stage

is the negative of the net benefit of different crop

yields from future time periods. Two sets of

constraints corresponding to the two stages are

also included. The first-stage constraints are

simple bounds to maintain positive canal capacities

within a defined range. The second-stage

constraints are divided into three types; [1] crop-
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demand requirements; [2] canal-capacity

limitations; and [3] water-availability constraints.

This formulation can be stated as:

Min - E

I* V

(16)

then the whole term corresponding to that

allocation is omitted.

The crop yield (Y^) is determined using the

FAO crop response function (Doorenbos and

Kassam, (1979)).

(21)

subject to:

First-stage Constraints

Second-stage Constraints

. loss

Vi (17)

08)

£

< c, V i, k

£ [(1.+ com. loss Ttitiof*11'1* * xtt]
M

<AWk VJfc

(19)

(20)

where Cj is the i-lh canal capacity of nc canals; a,

is a construction cost-capacity coefficient; Aj is

the area of fteld j of nf fields; Py^ is the

commodity price per harvested crop unit weight

(S/unit weight); Y^ is the crop yield in field j

harvested during period k (unit weight/unit area);

Pxt is the cost of water during period k (S/unit

volume); Xft is the lth allocated water of nx

allocations (unit depth); and NFXj, is an identifier

flag. NFX equals 1 or 0 defining that allocation

1 is or is not connected to field j, respectively. C,

and Cu are lower and upper bounds for the canal

capacities. D^ is the crop demands of field j

during period k and AWk is the amount of

available water during period k. Since D#, AWk,

Py, and Px are future parameters, they are treated

as random variables and denoted with overbars.

LRU is the order of the allocation 1 with respect to

canal i. For example, LRU = 1 means that the

lth allocation has a 1st order rank to the ith canal,

or the lth allocation is directly connected to canal

i where no conveyance loss is considered. If the

allocation is upstream of the canal so that it does

not contribute anything to the flow in the canal,

where Ym^ is the maximum yield of field j

harvested during period k (Mg/ha); Ky^ is the

FAO yield response factor in fraction for field j;

ETm^ is the maximum evapotranspiration of field

j during period k (mm); and IE^ is the irrigation

efficiency (fraction) for field j during period k.

6.1 Results

The stochastic optimization model has two types

of uncertain parameters which appear in the right

hand side of the model constraints; crop demands

and available water. The twelve objective function

coefficients (crops selling prices), were also

considered as uncertain. It was assumed that they

were described by normal distributions with

different coefficients of variation (CV). The

effect of each on canal capacities and future

revenues was evaluated using the RSD approach

for different levels of parameter uncertainty. All

runs were made on a SPARC station LX. The

results are compared with an optimal deterministic

solution which was developed using the mean

parameter values.

6.1.1 Available Water

Sufficient amounu of available water during the

two periods (condition of zero deficit level) were

assumed to follow normal distribution with mean

values equal to 3.22 and 2.91 millions of cubic

meters/season, respectively. These flows were

determined the water demand in a deterministic

optimization problem with unlimited available

water.

Stochastic problems were solved with different

coefficients of variation (CV) for the random

available water with the mean values noted above.

In all cases, the canal capacities were identical to

those obtained in the deterministic design.

A more important problem is balancing the
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canal capacity under shortage conditions. Thus,

a like analysis was repeated for different water

deficit levels. In these cases, the mean available

water was computed by decreasing the sufficient

available water by the deficit level percentage.

Table 1 lists the percentage increase of the

stochastic solution in the net revenues compared to

the deterministic result for different deficit levels

and available water coefficient of variations.

Canal capacities were the same for deficit levels

of 10% and 25% and were similar to the design

obtained from deterministic design with zero

deficit level. For the 30% deficit level, however,

the design capacities using the RSD approach

dramatically changed, as did the percentage

increase in revenues. The last observation points

out the importance of using the stochastic

approach in design when a significant shortage of

available water can be expected.

Table 1. Percent increase in net revenues between

deterministic and stochastic irrigation system

designs

Coefficient of Variation, CV

Deficit level 0.25 0.5

10% 2.4 2.9

25% 4.9 8.0

0.75 1.0

3.3 3.6

9.9 11.2

50% 4.7 10.9 17.3 22.4

6.1.2 Crop Demands

The influence of the variability of crop water

demand on the canal design capacities was also

evaluated. This demand is related to the potential

cvapotranspiration and the irrigation efficiency.

Continuous normal distributions for crop demands

were assumed and the deterministic demands were

assumed to be the mean values. Canal capacities

from the deterministic and stochastic designs

(CV=0.50) and showed a slight increase in

revenues using capacities obtained from the

stochastic design.

Another design was carried out when both the

available water (of 25% deficit level) and the

demands, were considered stochastic. The

percentage increase in net revenues compared to

the deterministic design was 9.6%. The

percentage increase in net revenues when only

stochastic water availability was considered was

8.5%. The minor change between the two cases

indicates that the canal capacities are not very

sensitive to the variabilities of crop demands for

this system.

6.1.3 Influence ofthe construction cost coefficient

Another set of cost coefficients was chosen to

evaluate the influence of these coefficients on the

canal capacities, as well as the revenues obtained

using different design approaches. The inital cost

coefficients were multiplied by a factor of 5 and

new stochastic and deterministic designs were

computed at the 50% deficit level for different

CV's of available water.

The improvement over the deterministic

solution was smaller compared to results using the

lower cost coefficients shown in Table 1. The

percentage improvements were 2.13, 5.36, 9.19,

and 13.03 for CVs of 0.25, 0.5, 0.75 and 1.0,

respectively. Since the canal sizes are decreased

with larger cost, the high available flows and their

benefits are not available so the stochastic and

deterministic returns become closer to each other.

6.1.4 Stochastic Objective Coefficients

Since RSD had poor convergence in the water

supply problem, an alternative method, known as

the L-shaped algorithm (Van Slyke and Wets,

1969) was used to solve this problem. However,

a large sample of linear prgograms must be solved

during each iteration of the L-Shaped algorithm,

so that all possible outcomes are covered in the

stochastic second stage. Three values were

defined for each random objective function

coefficient. Each coefficient was randomly

generated from a continuous distribution then

approximated to the nearest value of the three

discretized values. For the discretized

distributions, the number of possible outcomes is

tremendous (3IJ=531441 outcomes). As an

approximation, a finite sample with reasonable

size is sufficient in most situations. For the

current irrigation system analysis, by examining

different sample sizes, it was determined that this

condition was reached after 4000 outcomes.

At the zero deficit level and all coefficients of

variation, the design capacities of the canals were

identical to the deterministic design with the mean

coefficient values.

The available water was then lowered to 25%
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and 50% deficit levels and the problem was solved

for different coefficients of variation (CV=0.25,

0.50,0.75, and 1.0). The stochastic designs were

compared to the determinstic solution as a

percentage increase in net revenues (Table 2). In

the deterministic design case, the expected return

was computed by Monte-Carlo analysis with the

same CV's of the objective function coefficients

and a sample size of 4000. Although not listed,

the design capacities changed considerably from

one CV to another. The improvements are

significant which demonstrates the sensitivity of

the design to net crop selling prices.

7 CONCLUSIONS

Engineered systems that face an uncertain future

are design/operation problems. Two-stage

stochastic optimization has been demonstrated to

be a useful tool in examining these types of

problems. A promising solution algorithm is

regularized stochastic decomposition. In this

paper, RSD has been shown to be capable of

solving general water resources problems. The

benefits of the approach are clearly seen in the

improved returns from the irrigation canal design

and water supply planning studies.

Table 2. Percent increase in net revenues for

stochastic objective coefficients and different CVs

Coefficient of Variation, CV

Deficit level 0.25 0.5

25% 0.1 1.1

50% 0.6 4.6

0.75 1

3.3 6.3

12.5 23.3

6.1.5 Stochastic objective and RHS coefficients

The final analysis treated the available water and

the objective function coefficients as random. As

in the case of only stochastic objective

coefficients, the parameter variability at the zero

deficit level had no effect on the recommended

canal capacities. This conclusion was consistent

for all CVs.

At 25% deficit levels, design capacities differed

from the deterministic design. However, for CV

> = 0.50, the capacities did not change and the

system design was identical to zero deficit level

case. The gain in net revenues increased with CV

until it reached a maximum value of 9.8% at

CV=0.50 after that CV the gain decreased. The

decrease at higher CV's is attributed to the

increase of high level of variability. Similar results

and behavior were observed for the 50% deficit

level.

Stochasticity in both the objective and RHS may

result in a non-convex problem and non-global

optimal solutions. Therefore, the L-shaped model

was executed using different starting points. All

initial points resulted in the same solution which

indicates that the solutions are likely globally

optimal.
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