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COMPLEXITY, UNCERTAINTY, AND SYSTEMATIC ERROR IN

HYDROLOGIC MODELS

L. J. LANE and M. R NICHOLS

USDA-ARS, Southwest WatershedResearch Center

2000 £ Allen Rd, Tucson, AZ 85719, USA

Abstract Issues ofcomplexity, parameter and input variable uncertainty, and systematic model

errors are reviewed and assessed. Simple measures are derived to represent degree of

complexity, degree of uncertainty, and degree of systematic error for a simple subset of

hydrologic models. Model complexity is represented by a complexity number, Nc = nm + 1.

The quantity n is the number ofmodel parameters and input variables and m is the number of

simulation runs (around base or nominal values) required to assess noninteractive model

sensitivity. Model uncertainty is represented by a summed coefficient of variation, CVm,

computed from the sum ofthe individual coefficients of variations ofthe n parameters and input

variables. Systematic error, NSm, is related to how well the model mimics nature and is

represented as a function of the number of the basic concepts of conservation of mass,

momentum, and energy, and ofthe basic variables position, velocity, and acceleration included

in each model component. .Three infiltration models: Phi Index. RunoffCurve Number, and

the Green-Ampt Infiltration Equation; Two peak discharge estimation procedures: The Rational

Formula and the coupled Green-Ampt Kinematic Wave Model are used as example

illustrations. These examples are used to illustrate the highly interactive and important

concepts ofmodel complexity, uncertainty, and systematic error. The model quantification

methodology and examples are also used to formulate the hypothesis that simple measures can

be derived and used to objectively evaluate model complexity and its relationships with

uncertainty and systematic error. Possible future applications of the model quantification

methodology include selection of appropriate simulation models within decision support

systems and contributions to development of a systematic approach for development and

application ofappropriate technology.

1. Introduction

Hydrologic modeling is a scientific activity which requires abstraction and simplification of

processes occurring in nature. This abstraction and simplification constitutes an essential part

ofmodem scientific procedure (i.e. see Rosenblueth and Wiener, 1945). Compared with the

entirety of earth science and engineering, hydrologic modeling is a small and new science.

Almost all quantitative work in model conceptualization has been accomplished during this

century, with most progress made since the advent ofthe digital computer as a research and

development tool
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Because it is new and in a period ofrapid transition, hydrologic modeling is diverse in its

concepts and applications. The general topic ofhydrologic modeling on small watersheds was

recently and comprehensively summarized by Haan, et al. (1982). Goodrich and Woolhiser

(1991) reviewed the U.S. literature from 1986 to 1990 and concentrated on entire watershed,

or catchment, response rather than on components or processes. They concluded "...a detailed,

process based, understanding of hydrologic response over a range of catchment scales

(0.01-500 km1) still eludes the hydrologic community." This assessment is in agreement with

an earlier one by Dunne (1982) but is not as optimistic for the future as the views ofRogers

and Anderson (1987) or Bevin (1987). Anderson and Burt (1985) edited a volume ofpapers

on forecasting in hydrology including a brief, but broad-based, introduction to modeling

strategy (Anderson and Burt, 1985, Ch. 1 Modeling Strategies).

Hydrologically driven water quality modeling was recently summarized in the proceedings

ofa 1988 conference (DeCoursey, 1990). Beck (1987) presented a comprehensive review of

analysis ofuncertainty in water quality modeling and questioned whether more complex models

were better given their increased uncertainty. Hydrologically driven soil erosion modeling

within the U.S. Department ofAgriculture was recently summarized by Lane, et al. (1993).

These reviews, while not restricted to hydrologic modeling, illustrated the key role hydrologic

modeling plays in natural resource models.

These summary or synthesis books and papers held a common theme as they reviewed

historical and recent developments in the general areas ofhydrologic modeling and modeling

based on hydrologic models (water quality and soil erosion). This common theme included the

general assessment that models are increasing in complexity with time. Discussion ofmodel

complexity, uncertainty, and errors are explicit throughout these and other reviews.

Unfortunately, these difficult issues are usually dealt with qualitatively and heuristically. Often

the most useful insights are presented in almost anecdotal form (i.e. Todini, 1988; Wagenet,

1988; and Bevin and Jakcman, 1990).

Our central thesis here is that if further progress is to be made in understanding model

complexity, uncertainty, and errors, then quantitative measures must be developed to express

these concepts analytically or statistically. Further, it is our belief that this quantitative

approach must involve simple measures if they are to be useful at this stage in hydrologic

modeling. We seek insight through simplicity and do not intend to introduce additional

complexity in an already complex and easily misunderstood area ofhydrologic modeling.

1.1 CLASSIFICATION OF MATHEMATICAL MODELS

Classification ofhydrologic models was summarized by Woolhiser and Brakensiek (1982) and

included the broad classifications of material models and formal or mathematical models. It

is the second category that is of interest herein. They listed six criteria to use in classifying

mathematical hydrologic models as: (1) Model subject and structure, (2) Role of time, (3)

Cognitive value, (4) Character of results, (5) Approach and methods of solution, and (6)

Properties ofthe operator functions contained in the model.

Model subject and structure refer to which components of the hydrologic cycle are

addressed and how the components or processes addressed are being modeled. The role of
time refers to whether the processes are dynamic, that is, with time explicitly included in the

formulation or static where time plays no role. The cognitive value of a model refers to
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whether it is conceptual, physically based, or a trend model. The character ofresults refers to

the model's output and is generally described as stochastic (components random in time or

space) or deterministic. Approach and methods ofsolution refer to model type (i.e. physically

based) and how solutions to the model are obtained. Properties ofthe operator functions refers

to whether the model is linear or nonlinear, lumped or distributed, or stationary or

nonstationary.

Todini classified rainfall-runoff models and used the following general scheme (Todini,

1988, p. 346)

"A mathematical model in broad sense, is a combination oftwo basic components. The first

one expresses all the aprioriknowledge that one has on the phenomenon to be represented and

can be referred to as the physical component. The second, the stochastic component, expresses

in statistical terms what cannot be explained by the degree of a priori knowledge already

introduced..."

From the physical and stochastic components, Todini assumed four classes ofmodels based

on increasing levels ofthe apriori knowledge they include: (1) Purely stochastic, (2) Lumped

integral, (3) Distributed integral, and (4) Distributed differential models. Lumped and

distributed have their traditional meaning and integral refers to processes represented by

ordinary differential equations and differential refers to processes represented by partial

differential equations.,

1.2 USE OF CLASSIFICATIONS

Model classification schemes are useful in describing the general features of a model as to

which components of the hydrologic cycle it simulates, how the simulation is accomplished,

the type and level ofmathematics involved, the nature ofthe model output, and the general type

and amount ofinput information required. This knowledge is valuable in many ways. These

include, but are not limited to, comparing alternative models, selecting the appropriate model

for a given application, selecting data bases and experimental efforts to parameterize the model,

and designing model validation analyses.

As valuable as the model classification methods are, they do have their limitations. With

such schemes it is possible to classify a given hydrologic model if sufficient detail is presented

in the model documentation. Given the classification results, one has a generalized picture of

the model's complexity, its uncertainty, and its systematic error. However, the classification

gives a generalized picture only and does not provide the analytical tools to move much beyond

insight given by the anecdotal examples described earlier.

1.3 SCOPE AND PURPOSE

Hydrologic modeling discussed in this paper is limited to mathematical modeling and primary

emphasis is on rainfall-runoff modeling. No attempt is made to conduct and report a

state-of-the art summary or comprehensive literature search.

This paper provides a synopsis of selected examples and experiences in hydrologic

modeling related to our central thesis that simple, quantitative measures must be developed to

express model complexity, uncertainty, and systematic error beyond the limits of model

classification techniques and to provide insight beyond those insights available through

I
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qualitative assessments. We seekto formulate and test the hypothesis that simple measures can
be developed and used to objectively evaluate model complexity and its relationships with

uncertainty and systematic error.

2. A Measure ofModel Complexity

Measures ofmodel complexity are implicit in the dassificaUon schemes discussed earlier. A
complex model connotes one which is sophisticated and powerful but also difficult to
understand, operate and interpret One method ofinvestigating model complexity is through

2.1 NONINTERACTIVE SENSITIVITY ANALYSIS

Sensitivity analysis is a method ofassessing the relative importance or sensitivity ofa model's
response or output to its parameter values or inputs. The simplest and most easily understood

method ofsensitivity analysis is the noninteractive method.
Given a set ofmodel parameter values and typical values ofthe input variables which are

in a sense representative or nominal (called the base values hereafter), computations are
performed. With all other parameters and input variables fixed at their base values, individual
parameters and input variables are varied about their base value, independently and
sequentially over a range offeasible and realistic values and the computations are repeated.
The resulting set ofoutput values shows how the model functions and how important changes
in each parameter or input are in determining changes in the resulting output

Weaknesses in the noninteractive sensitivity analysis procedure include: (1) Parameters and
inputs are varied individually so that interactions are not determined, (2) Sensitivity of the
model to changes in inputs and parameters is dependent on the choice ofbase values, and 0)
The procedure is essentially empirical and does not draw on what is known of-the model
structure. Strengths ofthe procedure include: (1) It is straightforward and easy to perform and
understand, (2) The results are amenable to tabular and graphical presentation as they are
numerical and do not involve complex formulae, and (3) The procedure is independent ofthe

model structure and is thus broadly applicable. _...„..,.
A noninteractive sensitivity analysis for the hydrologic component of the CREAMS Model

(KniseL 1980) for a small agricultural watershed at Tifton, Georgia was conducted by Lane and
Ferreira (1980) Sensitivity of computed mean storm runoff volume to two parameters.
(CONA, a bare-soil evaporation rate parameter and CN. the Runoff Curve Number) is
UlustratcdinFig. 1. Changes in the parameter values and the resulting changes in mean storm
runoffvolume are shown as percentage changes from their base values. For example, in Fig.
1 a 50% decrease in CONA results in a 55% increase in mean storm runoff volume while a
10% decrease in CN results in a 48% decrease in storm runoffvolume. The example results
shown in Fig 1 suggest that decreases in the evaporation rate parameter, CONA. result in
magnified (larger changes in output than the corresponding change in the parameter value)
increases in.runoffwhile increases in CONA result in reduced (smaller changes in output than
in the parameter) decreases in runoff. On the contrary, all changes in CN result in magnified
changes in runoff. Thus all errors or uncertainty in CN are magnified as resulting errors in

2.:
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runoff while errors in CONA can result in magnified or educed errors in runoff. Finally,

changes in runoff are positively correlated with changes in CN while changes in runoff are

negatively correlated with changes in CONA.

2.2 MODEL COMPLEXITY NUMBER

The results ofnine simulation runs are showii in Fig. 1, one run for the base values and four

runs for CONA and four for CN. The general formula for the number ofruns required in a

noninteractive sensitivity analysis is Nc = nm + 1 where n is the number ofparameters and

input values (2 in Fig. 1) and m is the number of simulation runs around the base values

required to define the sensitivity curve (4 in Fig. 1).

We propose Nc as a simple model complexity number reflecting the size ofthe model (as

represented by the numberofparameters) and the amount of input required (as represented by

the number ofinput variables). Further, Nc reflects the complexity ofthe model structure and

function through the number of simulation runs required to define the sensitivity curves

illustrated in Fig. 1.

. i

Figure 1. Illustration of noninteractive model sensitivity. Changes in runoff volume with

changes in parameter values.
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3. A Measure ofModel Uncertainty

Mbdduncertainty^beexpressed*^
uncertainty and those due to errors in model structure and function. The emphasis here is on

introduc/uncertainty into the parameter, and inputs and^^£ v
Uncertainty in model outputs also result from errors in model formulation (ie. mistakes or

onS^rors in model structure (i.e. abstractions and ™^»^«1«« »
model implementation (i.e. coding errors, calculation errors, roundofferrors, etc.).

3.1
NONINTERACTIVEPARAMETER AND INPUT UNCERTAINTY

The coefficient ofvariation of a random variable is defined as the standard deviation divided
bvthTmeaTIt is often used as a relative measure of uncertainty as it is dunensionlessand
sStoSS* to Z mean value. Thus the coefficient of variation. CV can be used to
JZ3S.variability between random variables ofdifferent units and scales.

NStnatthecoefficieniofvariationforan individual parametercr"P^^
hl Lnnine Ae range ofvariation for sensitivity analysis as illustrated in Fig. I
ifid tage change in the base value ofthe parameter or input (as in Fig. 1),

S
woTSp^andnius^tohaveawmparableplusandrnm

^CVo^e (I Np) array ofcoefficient of variation ofa model's parameters and CVi is
the 0 N^^Y of^-ts of variation of a model's input variables, then an overall,
noninteractive coefficient ofvariation for a model can be defined as

CVm =
(l)

p-1

The overall coefficient of variation is a positive number and is formed from Nmj-Njp>
individual values. It is noninteractive because it does not cons,der covanances of the
parameters or input values.
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Weaknesses ofthe noninteractive coefficient ofvariation, CVm, include: (1) It deals only

with model parameters and input values, (2) It considers individual coefficients ofvariation and

does not include interactions, and (3) It does not order, or rank, parameters in terms oftheir

importance as determined by a sensitivity analysis. Strengths of CVm include: (1) It is

straightforward and easy to calculate and understand, (2) It represents a single number and thus

facilitates comparison between models, and (3) It is independent ofmodel structure and thus

broadly applicable.

Coefficients ofvariation for some representative values ofcommonly used rainfall-runoff

model input variables and parameters are summarized in Table 1. Coefficients ofvariation

from this table will be used in example calculations in a later section ofthis paper.

Table 1. Coefficients ofvariation for representative values ofcommonly used rainfall-runoff

model input variables and parameters

Variable or Parameter Coefficient of Variation Source and Comments

3x11 m plots, ARS Rainfall Simulator Database

for AZ and NV, Simanton, et al. (1986)

12.4 sq km Goodwater Creek Watershed, a cultivated

agricultural (row crops) area in Missouri, 35 largest floods

in 14 yean, Hjelmfett and Kramer (1988)

Simulated Rainfall:

Depth

Int.

Final Infiltration Rate*

Natural Precipitation:

Depth

Obs. Runoff"

Vol.

Peak

Unit Hydrograph"*

Peak

Time ofCone.

Time to Peak

Surface-Soil:

Manning n:

Bare-Fallow

No Till

Disk Harrow

Plow

Grass

Raneeland

0.04-0.13

0.02-0.07

0.26-0.64

0.44

0.67

0.64

0.19

0.4

0.32

0.7-0.8

0.3 -1.0

0.3 • 1.1

0.2-0.6

0.1-0.2

0.5-0.7

Overland flow from erosion plot studies. Engrnan (1986)

and Weta.etaL (1992)

!;-l

'\

■variances of the
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Table 1 continued Coefficients of variation for representative values of commonly used

rainfall-runoffmodel input variables and 1

VariableorParameter Coefficient ofVariation Source and Comments

Surface-Sod continued:

CurveNumber

Porosity

0 08 4.5 sq km watershed W-5 at Holly Springs, MS,

11 storms, 1968-73, Borah and Ashraf(1988)

007-0.11 Agricultural fields, unsaturated soil samples

fiom various studies, Jury, et at. (1991)

Water Content

0.1 bar

15 bar

Sat Hyd. Cond.

0.04-0.20

0.14-0.45

0.48-3.20

♦ Derived estimate for saturated hydraulic conductivity. Note relatively high coefficient of

variation under controlled experimental conditions.

♦♦♦ cSSasinputvaluestounithyto^
models.

3.2 AMODEL UNCERTAINTY NUMBER

q. 1 as a simple model uncertainty number which reflects the
Jm^dTp model parameters through their coefficents of ™aUoa
in model output is not dealt with explicitly, but» imphcuy <*»«"*<?

in inputs and parameter values and the associated vanaUons m output through

sensitivity analysis.

4. A Measure of Systematic Error

=^5
and outputs and which does not include the

a high systematic error.
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The governing equations ofprimary interest in rainfall- runoffmodeling are:

1. Equation for conservation ofmass (continuity eq.),

2. Equation for conservation ofmomentum (momentum eq.),

3. Equation for conservation ofenergy (energy eq.),

4. Equations specifying position (x,y,z),

5. Equations specifying velocity

dx dy dz

{~dE'Tt'Tt

6. Equations specifying acceleration

183

(2)

(3)

These equations, or most commonly a one-dimensional subset ofthem, are specified for each

component in a model and combined and manipulated until the mathematical model for the

component is derived.

4.1 SYSTEMATIC ERROR NUMBER

IfNEc is the number ofthe six governing equations included in a component then it is possible

to define a component systematic error number, NSc as

NSc = 10.0[(6.0-WEc)/6.0] (4)

where the quantity wilhin the brackets is a number between 0 and 1.0, and the coefficient (10.0

in this case) is a scaling factor included to facilitate graphing.
IfNSc is summed over all Nc components, the resulting model systematic error number,

NSm, is

NSm= (5)

c-l

where NSm is again a number between 0 and 10.
Wepropose NSra as a simple number reflecting the level ofsystematic error, with respect

to the basic governing equations, contained in a model. This number indicates nothing about
—•- J —j—i—j —•t-~r, it merely

indicates whether or not the governing equations were included in the model structure. As
such,NSm is a measure ofthe amount ofprocesses-based formulations included in a model and

thus is an overall measure ofits physical basis.

:

i
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5. Objective Evaluation ofModels

As stated earlier, there is a great need for objective, repeatable methods of selecting the

appropriate model for a specific application. Although several subjective techniques

undoubtedly exist and are used routinely, advances in hydrologic modeling and the associated

increases in model complexity require more objective techniques.

5.1 A SIMPLE METHODOLOGY

We propose that the model complexity number, Nc, the overall noninteractive coefficient of

variation, CVm, and the model systematic error number, NSm. be used to quantify model

complexity, uncertainty, and systematic error.

5.2 EXAMPLE ANALYSES

One of the earliest and apparently simplest infiltration models is the Phi Index which is an

average rate ofinfiltration, applied to a time-intensity graph (hyetograph) of rainfall, such that

the volume of rainfall excess equals the volume of storm runoff. For this and subsequent

analyses, wewUl assume a reference hyetograph made up of 10 time-rainfall intensity pairs or

20 paired numbers. la actual practice, the number oftime-rainfall intensity pairs will vary with

storm characteristics, measurement equipment, and data processing procedures.

The Phi Index can be quantified as follows. It has one parameter, Phi, and it has 20 input

values so n = 21. Ifwe assume m = 4 simulations to determine model sensitivity, then the

model complexity number is Nc=nm +1 = (21 )(4) + 1 = 85. From Table 1 ifwe assume Phi

contains all the variation ofthe saturated hydraulic conductivity plus that due to porosity and

initial water content, its coefficient ofvariation should be selected from near the high range of
0.48-3.20. Assume the CV for Phi is 2.0. Further, ifwe assume the intensity values have a

CV comparable to total storm depth (0.44 in Table 1) and ifwe assume a default value of0.10

for the time values, then the model uncertainty number. CVm, can be computed as follows

CVm = CVp + SUM CVi = 2.0 + 10(0.44) +l0(.10) = 7.4. Finally, the systematic error

number, NSm is 10.0(6-l)/6 = 8.33 because the Phi Index only satisfies continuity ofmass.

Therefore, for the Phi Index the model quantification numbers are Nc = 85, CVm = 7.4, and

NSm = 8.33.

A comparable analysis for the RunoffCurve Number Model yields one parameter (CN or

S) and one input value, P (he total storm rainfall. Thus, Nc = (2)(4) + 1 = 9 ifwe again assume

m = 4. Ifwe assume the CN has a CV ofabout 0.10 and P again has a CV of0.44 (Table 1),

then the uncertainty number is CVm = 0.10 + 0.44 = 0.54. Finally, the Runoff Curve Number
Model only satisfies continuity of mass so the systematic error number is NSm = 8.33.

Analysis ofthe Green-Ampt infiltration equation shows 4 parameters (saturated hydraulic

conductivity, Ks; soil porosity, n; the matric potential across the wetting front, Psi; and initial
water content, SEi) and the same 20 time-intensity values used previously. With these values,

the model complexity number is Nc = (24X4) + 1 = 97. The model uncertainty number is
CVm = CV(Ks) + CV(n) + CV(Psi) + CV(SEi) + 10(.44) + 10(.10). Assume mid-range

values for the CVofKs.n, Psi, and SEi as 1.5.0.10, .50. and0.20 so that CVm = 7.7. Finally,
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the Green-Ampt model satisfies continuity ofmass and calculates the position and velocity of

the wetting front so its systematic error number is NSm = 10.0(6-3)/6 = 5.0.

The Rational Formula is

Q = CIA (6)

where Q is peak discharge in cfs, C is a runoffcoefficient, I is rainfall intensity in in/h for a time

period equal to the time of concentration, and A is the watershed area. The time of

concentration, to. is usually computed from basin characteristics. For example, the Kirpich

(1940) formula is ofthe form

tc = iC(L0-77s0-385) (7)

where K is a coefficient, L is basin length and S is an approximate average slope for the

watershed. One could assume a given value of tc and only use Eq. 6 in the analysis, however,

we decided to include time of concentration because of its central role in hydrograph

development

With these equations, the Rational Formula has a model complexity number of

Nc=(6X4) +1 = 25 because there are 5 parameter values (CAKJ.,and S) and one input (I).

Assuming a CV of about 0.5 for C. 0.44 for I. 0.05 for A, L, and S, and 0.5 for K, the

uncertainty number is calculated as CVm = 0.5 + 0.44 + 3(0.05)+0.5 = 1.59. Because the

Rational Formula only satisfies continuity ofmass, its systematic error number is NSm = 8.33.

A coupled Green-Ampt infiltration model and kinematic wave model for a plane was

described by Stone etal.{\ 992). This model contains all the Green-Ampt parameters and input

values plus the following: (1) Slope ofthe plane, S, (2) Length ofthe plane, L, (3) Hydraulic

roughness coefficient, C, (4) Percent canopy cover, CC, (5) Percent ground cover. GC, (6)

Random roughness statistic, RR, (7) Depth-discharge exponent, m, and (8) A time step for

calculations, Dt

With these values there are 12 parameter values and the same 20 time-intensity pairs so that

the model complexity number isNc = (32)(4) + 1 = 129. The coefficients ofvariation ofL, S,

Dt are assumed to be 0.05, for C about 0.50 (Table 1, Manning n values), and about 0.10 for

CC, G C, RR, and m. These CVs sum to 1.05 and when added to the CVs from the

Green-Ampt component produce CVm = 7.7 + 1.05 - 8.75. Finally, the kinematic wave

equations satisfy continuity ofmass and take into account velocity and position so the overall

systematic error number for the model is NSm = 5.0. Results of the model quantification

examples are summarized in Table 2.

Values from Table 2 are plotted in Fig. 2. Notice that the order ofincreasing complexity

ofthe 5 models is (1) RunoffCurve Number (CN), (2) Rational Formula (RF), (3) Phi Index

(PHI), (4) Green-Ampt Infiltration (G-A), and (5) Kinematic Wave Model (KIN). For these

examples, there is an almost linear increase in model uncertainty number with increasing model

complexity number. The overall trend is for model systematic error to decrease with increasing

model complexity number.

TheRunoffCurveNumberModel and the Rational Formula have relatively low complexity

and uncertainty but high systematic error. In contrast, the apparently simple Phi Index is

characterized by high complexity and uncertainty and high systematic error because it requires

ji
>

t.
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thefuUrainfellhyetographasinput TheGreen-Ampt Infiltration Model requires little increase

incomplexity or uncertainty over the Phi Index but exhibits significantly less systematic error
(Fig. 2). Based on these criteria only, there would appear to be little or no advantage of
simplicity of the Phi Index over the Green-Ampt Infiltration Model but a heavy penalty in

systematic error.

Model

Phi Index

Runoff Curve Number

Green-Ampt Infiltration

Rational Formula

Kinematic Wave

Complexity

85

9

97

25

129

Uncertainty

7.40

0.54

7.70

1.59

8.75
i

Systematic Error

8.33

8.33

5.00

8.33

5.00

Figure 2. niustration ofrelationships between model complexity, uncertainty, and systematic

error for the 5 examples.
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We have discussed model classification and developed and illustrated examples of model

quantification in terms of complexity, uncertainty, and systematic error. We now briefly

discuss selected future potential applications ofmodel quantification techniques.

6.1 MODEL SELECTION IN DECISION SUPPORT SYSTEMS

Increasingly, land and natural resource systems management will require the application of

multiobjectivc decision making. Questions and decisions will involve basic resources: soil,

water, air, plants, and animals; human resources: economics, recreation, esthetics, cultural

heritage, and preservation; and broad societal concerns such as resource sustainability based

on productivity, the environment, economics, equity, and social policy goals. As the data bases,

simulation models, objectives, policies and regulations, monitoring, and reporting requirements

become more comprehensive and more complex, computer-based decision support systems

(DSS) will be required to assist the decision makers.

Because ofthe complexily ofIhe problems and the lack ofcomplete data bases, the DSS will
use imbedded simulation models to provide values of the multiobjective criteria, or decision

variables, used in the multiobjective analyses. Because the decision theory associated with

multiobjective decision making is itself complex and mathematically-based, it too will be

imbedded within future decision support systems (i.e. Yakowitz, el ai, 1992).

Techniques similar to the model classification criteria and model quantification methodology

summarized herein could provide the DSS with objective ways of selecting the appropriate
model once the land management-natural resource problem has been defined. This procedure

ofproblem definition (in the rigorous systems engineering sense) and the subsequent selection
of suitable simulation models to address the problem lead to the discussion of appropriate

technology.

6.2 A SYSTEMATIC APPROACHTO APPROPRIATETECHNOLOGY

Appropriate technology has been a goal and has been practiced since the start ofcivilization
(see for example, Albertson, 1991). According to Albertson (1991) recent emphasis on

appropriate technology is primarily due to Schumacher (1973) and his concern for

shortcomings ofpolicies ofthe industrialized nations.
Appropriate technology has often been discussed in the context of transfer of technology

from the industrial countries to the less developed countries. This interpretation is too

restrictive and eliminates the need for appropriate technology within as well as between all

levels oforganizations, societies, and nations.

Albertson's (1991, p. 229) definition is:
"Appropriate technology is the appropriate use of knowledge, skills, organization and

machinery for the production of goods and services which are desired by those people being
served. These goods and services are provided in a way that: is compatible with nature and the
environment, uses only renewable resources including energy resources, benefits people
equally and to the maximum extent possible, and is based on an economic system where the

service motive is combined equally with the profit motive."
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Acentral concept inmis definition ofappropriate technology is the matching oftechnology
used to assist in providing goods and service with the needs and desires ofthe people being
served in a socially, environmentally, economically, and natural resource-base sustainable

manner.

Within the narrower context of this paper, a key concept is to match the appropriate
simulation model with the users1 needs, preferences, and resources as specified in the problem
definition. Perhaps model quantification methodology such as described herein can assist in
selecting the appropriate simulation models to use in addressing specific problems and thus
contribute to the development of a systematic approach for development and application of

appropriate technology.
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