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ABSTRACT
Analog Computer Solution of the Unsteady
Flow Equations and Its Use in Modeling

The Surface Runoff Process

The flow of water on a watershed is usually unsteady and spatially varied, but can be
adequately portrayed by the equations of momentum and continuity, commonly referred to as the
unsteady flow equations. Because these equations are quasi-linear, hyperbolic, partial differential
equations, they are not easily amenable to solution. Analog computer models of surface runoff
generally have been based on simplified forms of these equations. As an nmp}ovement of those
models, an analog computer solution is presented here for the unsteady flow equations. The
solution involves the conversion of the partial differential equations into a differential-difference
system, and a consideration of the stability of the difference approach was performed.

The analog computer solution is then used to develop a model of surface runoff generated
from nainfall on a watershed. Spatial distribution of the watershed parameters is accounted for by
dividing the drainage basin into a number of subzones according to its physiography and the
rainfall input was made to each subzone. Both the overland and channel flow components are
considered in the surface runoff process. Preliminary testing and verification of the model have
been made by simulating two runoff events on a subwatershed of the Walnut Gulch experimental

watershed near Tombstone, Arizona.

Amisial, Roger A.; Riley, J. Paul; Renard, Kenneth G.; Israelsen, Eugene K. ANALOG COMPUTER
SOLUTION OF THE UNSTEADY FLOW EQUATIONS AND ITS USE IN MODELING THE

SURFACE RUNOFF PROCESS
Research Project Progress Report to Soil and Water Conservation Research Division, Agricultural

Research Service, United States Department of Agriculture, December 1969, Washington, D.C.
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PARTIAL LIST OF SYMBOLS

Definition

cross-section area of the flow

top width of the cross-sectional area of flow

a constant applied to the computation of the channel scepupe
channel seepage capacity rate at any time

infiltration capacity rate at any time

minimum value of the infiltration capacity rate

maximum value of the infiltration capacity rate R
actual infiltration rate

acceleration due to gravity

time scale factor

unit rate of lateral inflow into a channel

subscript indicating the section number

subzone number

channel roughness coefficient

a real constant

constant less than one in Horton equation

constant less than or equal to one in the retention capacity rate equation and depend-
ing upon vegetation and soil surface characteristics

mass of fluid within a control volume, also superscript indicating time interval
subscript indicating maximum éxpected values

subscript indicating the downstream end section of a channel

unit rate of channel loss due to seepage

effective rainfall rate

rainfall rate

xill



PARTIAL LIST OF SYMBOLS (Continued)
Symbol Definition
Q = total rate of flow at any section of a channel and at any time
Q, = rateof lateral flow from a channel branch or tributary
q = rateof overland flow per unit width
Qerg = capacity rate of seepage loss from a unit length of channel
Qg = rate of seepage loss from channel
Ry = retention capacity rate
Res = retention storage capacity of the vegetation and land surface
Ry = actual rate at which rainfall is entering retention storage
Ry = amount of rainfall in retention storage
S¢ = friction slope
S, =  channelslope
t = real time
v = average velocity of flow
X = distance along channel
y = flow depth
Z = total number of subzones, and also stands for the subzone containing the watershed
outlet
Y = specific weight of fluid
¢ = a variable which canbey,A,V,q,0r Q
p = fluid density
T = computer time
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CHAPTER I
INTRODUCTION

The determination of the response of a drainage
basin to water input is the core of many hydrologic prob-
lems. Some of these problems are: forecast of flood peaks
in rivers, protection against flood damage, design of
hydraulic structures, determination of the downstream
effects of proposed structures, and development of addi-
tional water supplies for a growing population. Solutions
to these problems require reliable procedures to deter-
mine, at some point on the watershed, the flows resulting
from known or given distributions of water input. Such
flows become quitec complex when they are the response
of the watershed to the history of precipitation. Any
conventional procedure for the computation of flow in
open channels is beset with many difficulties. The meteor-
ic water is depleted by retention on trees and in surface
depressions, evaporation, and seepage into the ground,
while unsteady spatially varied flow prevails on the land
surface and in the channel system.

Previous Work

The basic analytical approach to the overland and
channel flow phenomena was provided by de Saint-
Venant (1871) who derived the equations of continuity
and momentum for unsteady, gradually-varied flow. These
equations, which adequately describe the surface flow
over a drainage basin, are nonlinear partial differential
equations of the hyperbolic type. They are commonly
referred to as the Saint-Venant equations, the unsteady
flow equations, or the shallow water equations, and their
integration by a direct method has been obtained for only
simplified cases.

Massau (1889) transformed the Saint-Venant equa-
tions into a set of equivalent characteristic equations and
presented a graphical method. for their integration. His
method was simplified and adapted to practical purposes
by Craya (1946) who made the assumption of straight-line
characteristics to solve the unsteady flow equations for
problems involving flow resistance in sloping channels
with changing cross-section. Nosek et al. (1947) used a
modified Craya method to route the wave which resulted
from the failure of the Saint Francis Dam near Los
Angeles, California. They obtained good agreement with
the recorded flood measurements.

Thomas (1937) was the first to outline finite-
difference methods for the Saint-Venant equations in rela-
tion to the study of flood movement.in rivers. However,
such methods were of little practical use at the time of
their development because of the extensive manual com-
putations involved. Since then, computational difficulties
have been considerably reduced by the concurrent de-
velopment of electronic computers and improved numeri-
cal analysis techniques. Stoker (1953) formulated an
explicit finite-difference method for the shallow water
equations. Isaacson et al. (1954) solved on.a UNIVAC
digital computer a mathematical model of the Ohio River
basin by making use of the numerical method developed
by Stoker. The same model was successfully applied for
flood prediction on the Ohio and Mississippi Rivers. After
the pioneering work of Stoker and his co-workers, many
mathematical models of channel flow based on the Saint-
Venant equations have been solved by finite difference
methods on digital computers. Amien (1966), Daubert et
al. (1967), Preissman et al. (1967), Thirriot et al. (1967),
Fletcher et al. (1967), and Baltzer et al. (1968), have used
several difference methods for the solution of the Saint-
Venant equations, and have successfully applied them to
route flow through river networks and irregular channels.

Keulegan (1945) seems to have been the first to use
the Saint-Venant equations in an analysis of overland
flow. Iwagaki (1951) used those equations to compute
runoff on road surfaces. Overland flow models based on
the unsteady flow equations were developed at Stanford
University. A well-known example of the Stanford studies
is the runoff model developed by Morgali et al. (1965) in
which a difference scheme somewhat similar to the one
presented by Stoker was utilized. These investigators
found good agreement between the computed and the

. measured hydrographs. Woolhiser et al. (1967) made a

study of the rising hydrograph for overland flow based on
the solution by finite-difference integration of the non-
dimensional characteristic equations utilizing the grid of
characteristics. They found that no unique dimensionless
rising hydrograph exists for overland flow.

Formulation of finite-difference solutions involves
consideration of the stability of the various methods.
Ritchmyer (1962) made a survey of several difference
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schemes applicable to unsteady flow in general, and de-
veloped the conditions under which each scheme is stable.
Liggett et al. (1967) made an empirical examination of
the stability of some of the difference methods used in
the numerical solution of the shallow water equations.
They found that a finite-difference scheme based on the
method of characteristics was stable but that explicit
methods were not satisfactory except for some special
cases.

Because of mathematical difficulties involved in the
solution of the Saint-Venant equations, a number of
mathematical models of unsteady flow have been based
on simplified forms of thuse equations. Deymie (1939)
linearized the equations and solved the resulting simplificd
forms by the Riemann-Hadamard method. Lighthill et al.
(1955) presented a solution by Laplace Transform for the
Deymie linearized equations, and also developed the kine-
matic wave theory based on the continuity equation and a
simplified form of the dynamic equation of unsteady
flow. Henderson et al. (1964) and Wooding (1965, 1966)
made use of the kinematic wave theory in the solution of
hydrologic problems. Brakensiek (1967) replaced the
natural watershed by an equivalent sloping plane and
applied the simple kinematic flow equations to route the
rainfall excess over the equivalent plane. He found the
computation system to be feasible for predicting hydro-
graphs. Ishihara et al. (1955), Harder et al. (1960), and
Shen (1965) developed special electronic analog tacilitics
to solve runoff models based on simplified unsteady flow
equations. Riley (1967) introduced further simplifications
by using the continuity equation in the form of a storage
equation, and a simplified momentum equation. His
model was solved on the general-purpose electronic analog
computer, and the hydrographs obtained from the model
showed encouraging agreement with measured hydro-
graphs.

In the past, mathematical models of surface runoff
based on the unsimplified shallow water equations have
been solved exclusively on digital computers. while the
analog computer has been restricted to models based on
simplified forms of those equations. However, there is
now growing recognition that the unsimplified equations
yield improved results, and that the analog computer pre-
sents some advantages in the simulation of physical
systems governed by nonlinear partial differential equa-
tions. There is. therefore, a specific need to investigate
techniques for solving on the analog computer surface
runoff models based on the unsimplified unsteady flow
equations.

In the interest of simplicity, most of the above men-
tioned mathematical models of surface runoff have neglec-
ted spatial variation of hydrologic elements such as rain-
fall, slope, channel size, soil, and vegetation within the
watershed. Also, the surface runoff process is often
assumed to take place either on the land surfaces or in the
channel system, overlooking the fact that both overland
and channel flows occur on the watershed. Further, the
equations of unsteady flow are usually adapted to route
the excess rainfall over impervious surfaces, although it is
well known that infiltration continues as long as water is
available in detention storage. There is a definite need for
improved mathematical models of surface runoff which
adequately account for both time and space variation in
the physical characteristics within the watershed, and the
occurrence of both overland and channel flows, consid-
cring that infiltration does not necessarily cease concur-
rently with rainfall.

Objectives

The overall objective of the study was to investigate
the possibility of improving analog computer models of
surface runoff from rainfall over a watershed, with partic-
ular cmphasis on the model developed by Riley (Riley,
1967, Riley et al., 1967). The specific objectives are as
follows:

i. To develop appropriate expressions for the
actual infiltration over the land surfaces and
in the stream channels.

2. To develop the unsteady flow equations appli-
cable to the movement of flow generated
from excess rainfall over a watershed, and to
transform them into a differential-difference
system of equations for solution on a general-
purpose electronic analog computer.

3. To adapt or develop a method to study the
stability of the differential-difference system
of equations.

4.  To use the analog solution of the equations of
flow in a program to route the rainfall excess
over the land surfaces and through the chan-
nel network.

5. To test and verify the surface runoff model on
a natural watershed.

6. . To study the effect of neglectfng certain terms
of the unsteady flow equations on the flow
hydrographs.
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CHAPTER 11
DERIVATION OF THE UNSTEADY FLOW EQUATIONS

~ To derive the equations which govern unsteady
flow, use will be made of the conservation of mass, mo-
mentum, and energy principles (Watters, 1967).

Assumptions

In deriving the basic equations of unsteady flow the

following assumptions are made:

1. The fluid is incompressible.

2. The acceleration is in the x-direction.

3. The curvature of the water is small, so that
the y-component of acceleration of the water
particles has a negligible effect on the pres-
sure. Consequently, the pressure distribution
is hydrostatic and there is no vertical velocity
component. Also the pressure-distribution
coefficient is equal to unity.

4.  The shear stress, 7o, is uniform over the peri-
meter of the channel for the infinitesimal dis-
tance dx.

5. Lateral inflow and outflow rates are uniform
with respect to a particular channel element.

6. The momentum influx of the lateral inflow
and the momentum efflux of the lateral out-
flow are ignored.

7.  The angle of inclination of the bed with re-
spect to the horizontal surface, 8, is so small
that it is considered as:

sin 8 =S = slope of the bed
and
cos 6= 1

8.  The effects of resistance to flow in unsteady
flow are the same as in steady flow.

3. The energy and momentum coefficients are
assumed to be equal to unity.

Continuity Equation

The continuity equation will be derived by applying
the principle of conservation of mass in an infinitesimal
space between two channel sections as illustrated by
Figure 2.1. With reference to Figure 2.1, the quantity of
fluid entering the element per unit time, dt, is given by
the expression:

o=

o dx) dt +1 dx dt
Ix

lo -

Similarly, the quantity of fluid leaving the element
per unit time, dt, is given by:

1 3Q
(Q +3—5—xdx‘dt+0 dx dt

The net amount of fluid leaving the element per
unit time, dt, is, therefore:

(_aQ + 0 -1‘ dx dt
dx

According to the principle of conservation of mass,
the net outflow is equal to the decrease in storage during
the time dt. Therefore

ag =
(8: + O-I)dxdt = -dA dx

or

2 , 20
ato-a‘#O-I:O......

. (2.1)

Momentum Equation

According to Newton’s second law, the rate of
change of momentum of the fluid within a control volume
must equal the external forces maintaining the control
volume in the position at which it is analyzed. This state-
ment, when expressed as a vector equation, reads as
follows:




L wrrte

initial water
surface at
time t

_—~water surface
at time t + dt

O = lateral outflow rate

Figure 2.1. Definition sketch for the derivation of the continuity equation.

external

:F s EmI .. 2D

In the x-direction the external forces are

= + F +F
ZFx Fp g r

in which
F, represents the pressure forces
F represents the gravity forces
F, represents the resistance forces
Therefore, Equation (2.2) takes the following form in the

x-direction:

rp+rg%rr=—§;imv\........(2.3)

Pressure forces

The net pressure force in the x-direction on the con-
trol volume shown in Figure 2.2a is

F =F +F R ¢-X)

in which
Fp, represents the net force between sections 1

and 2

Fp2 stands for the force exerted on the fluaid by
the walls or sides of the channel Fplis o btain-
ed by the hydrostatic law of pressure distrib-
utions;
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+. Flow prufite showing contral volume.

b. Cruss-section of flow showing centroid and defining
variables.

Figure 2.2. Definition sketches for the derivation of the
net pressure force between two channel sec-
tions.

o o8 [Ra - Rl -SR]

or

Fo, * .’ ,,% (icA] ax

N X )

in which
h. is the distance of the centroid of the cross-
sectional area A from the water surface
B' is the pressure-distribution coefficient which
corrects for the curvature effect of the stream-
lines of the flow

The pressure-distribution coefficient is generally ex-
pressed by

The pressure head correction, ¢, is given by

CRE

in which ‘
r is the radius of curvature
V  is the average velocity of the flow
y js the flow depth

The pressure-distribution coefficient B' is greater
than 1.0 for concave flow, less than 1.0 for convex flow,
and equal to 1.0 for parallel flow. By definition:

. @8

_ yix, t)
h'cA =f (y-z) b{x, z)dz *
o

in which
y(x,t), b(x,z), and z are defined as shown in Figure 2.2b
Therefore:

y{x.t)

g - a
= (hcA) =T j (y~-z) bix, z}dz

[+ ]

or applying Leibnitz’s rule: !
- y ab ) by
gim - [ frtoot] e e

« {y-z) bix, z) o\
z2s0

or
3 i M iy 24 Loy, 27
a—x'(hcA) = “.o {y-2) 3 °* Ox\fo v ( - )
Equation (2.7) can be written as
B e [Ny 3y
sz (B A = fo (y-2)gmde ¢ AL ... (28)

bit)
. &
1 According to Leibnitz’s rule, if F() = (an (x,t)dx where
a and b are differentiable functions of t and where (x,t) and
"l‘lgx-'l are continuous in x and t, then

bit)
aF | Masad,, e[bm.z]‘%‘l . o[a(t).t d—:{ﬂ

at Ja(t)
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Equations {2.5) and {2.8) yield:

dy
ax

of rY T ap
F - | - —dz -~
Py l-\:dh"‘o y-2) ax L.

In the more general case of an
(diverging or converging channel}, th
pressure force Fp
force will be evaluated in Figure 2.3.

the channel. The differential fo
From Figure
ponent of tha
is p di ds cos

p dl ds cos B sin G

ar__ = .
P2
!
From Figure 2.3a:
ds sin @ = L db
z
From Figure 2.3b:
dl cos B = dz
Therefore:
oF =+ p dz db
py 2 -
or
.1 5b
dF?Z =3P dz e e

According to the hydrostatic law of pressure

=

e = [ Y {y-2}

Thus, for 2 constani length of channel dx

sides

Y

ﬁ. X))

on-prismatic channel
ere is the additional
that the fluid exerts on the sides. This

a. Plan view of channel.

Consider an elemental area, ds di, on the side wall of
rce on that area is p dl ds.
2.3b it can be seen that the horizontal com-
t force is p dl ds cos B, and its x-component
B sin o (see Figure 2.3a). Thus:

. .(210)

b. Channel cross-section.

Figure 2.3. Simplified representation of the force exeried
on the fluid by the walls or sides of the chan-
nel.

F
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P ﬁyAadx

x

ption 3 given at the beginning of thuis

According to assum
g, is equeal

chapter, the pressure-distribution coefficient,
to unity. Therefore:

distribution:

and for both

Gravity fevees

From Figure 2.1 the weight of the elemental votu me
#

F o2/ ar. eBydx; (y-r)2faz 9 11
; LB ydx s (yer)gzde 2.1 -
Py Jo ° i 9% ¢ ) of fluid is:
Y/hen Equations (7.4}, {2.9), and (2,11 ere combinad, the
pressure forees are obtained 145 wo: oA dx . .{2.13)
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This weight gives rise to the gravity force in the
x-direction:

F_=yAdx oind
8

or

FoeyhdxS,. ... .(2.14)

Resistance forces

In the category of resistance forces are grouped
those forces which oppose the movement of flow and
induce losses of energy. These forces include: a) frictional
forces due to the liquid viscosity and the channel rough-
ness; b) resistance forces which arise from the irregulari-
ties in channel bottom and cross-sections, the meandering
and nonlinear alignment of the channels, and the presence
of obstructions such as vegetation and large boulders.

In view of assumption 8 given at the beginning of
this chapter, the resistance forces will be calculated from
the equations of motion and energy for steady flow.

For steady flow tne equations of continuity and
motion can be written in the form:

dv da .
AE—;+VE_I o . . PO (215)
d
F #F +F =V mV) . (2.163)

Since Equations (2.12) and (2.14) hold for steady as
well as for unsteady flow, they can be combined with
Equation (2.16a) to yield

d ‘ dv , 2 dm ‘
~yAJlds 4 adxs +F smv +VOFE L. (2.16b)
Since

Y
m=gAde L 217

and for steady, one-dimensional flow x is the only inde-
pendent variable. Equation (2.16b) becomes

aa

d . WV, Yax vt
cyAPdx tyAdxS +F o S ABVE o de Vg

or

2
Foeyaax [§Los +X QUL L R (2.180)
Combining Equation (2.18a) with (2.15)
F'=%Adx [g(%-Sof-‘é:—:{ +a-0%
vl ... ... .. (218b)

The total energy in foot-pounds per pound of water
in any streamline passing through a channel section can be
expressed as the total head in feet of water, which is the
sum of the elevation above a chosen datum, the pressure
head, and the velocity head. According to the principle of
conservation of energy, the total energy head at an up-
stream section should be equal to the total energy head at
a downstream section plus the energy head lost between
the two sections.

With reference to Figure 2.4, y and V designate re-
spectively the flow depth and velocity at section O mid-
way between sections |1 and 2. Values at sections 1 and 2
are obtained from values at section O by Taylor series
expansion.

By the principle of conservation of energy the fol-
lowing expression can be written between sections 1 and

2 2
dx o, dx dxdy VI, dx d v_) dx
TSt TSttt T Gt tTax (% T2 %
2 1y
L8x g, dxdy VO dxd y_)
2 1 2 dx 28 2 dx g
or
2
d d v - .
=S tax {zs} =S L. .(2.19)

Comparison of Equations (2.18b) and (2.19) gives
the resistance forces as

:_?_ R v av
Fo= = Adx [gSl+(I-0)x “’HJ - (2.20a)




Figure 2.4. Simplified representation of energy in steady flow.

Equation (2.3) becomes

ki av A 209A 2y
Fp+Fg+Fr= Ezdx (A-évaa‘ +VSY +AV3:

The continuity equation (Equation (2.1)) can be
written as

aa |, ,20A N _g.-0)v
vﬂ + V x + AV B { }
Therefore
X oy y 2
F 4F +F = Adx [a‘ 4(I-O)A] .. (2.20b)

When the expressions for F,, Fg, and F, (Equa-
tions (2.12), (2.14) and (2.20a) respectively) are substi-
tuted in Equation (2.20b), the latter equation becomes

day X ¥ av
— . > - L oLy -
A gldx v yadeS ¢ T Adx g5, + (-0 T

- av y
= gAdx[l+(I-O)A
Thus:
av av 8y . .
W v aegh = a5 oSy L (221)

Many expressions have been proposed for the com-

putation of the energy line slope S¢. A commonly used

relationship is the Manning formula which expresses S¢ in
terms of the hydraulic radius. In this study it was found
convenient to assume that the energy line slope is propor-
tional to the kinetic energy of the flow. Since the ki netic
energy depends on the square of the flow velocity , the
following general expression can be written

(2 .22a)

S‘=K|V‘V

in which
K is the resistance coefficient, treated here as a

positive constant, and defined as follows:

(2.22b)

LK + K
K-hOOK1¢KZ 3 .

)
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in which

Ko is the basic resistance coefficient for a
straight, uniform channel in the natural mater-
ials involved

K; is a term added to correct for the effect of
obstructions

K, is a term for channel irregularities

K3 is a value added to compensate for meander-
ing of the channel

Application of the Momentum and Continuity
Equations to Irregular Channels

The cross-sectional area of the flow can be expres-
sed in terms of the flow depth, y. The relationship be-
tween the area and the depth varies longitudinally for
natural channels, so that )

A = Ay, v

in which
Y  is a shape factor which can include various
parameters such as the base width or the top
width, a measure of the divergence or con-
vergence of the channel, etc.

Thus, the space derivative of A can be written as

%:’ ; ‘:—‘;)‘lﬂ=comt. %5 ' (:_z.ly:“’n“- %E @)

The function ¥ (x) is usually known, and for a pris-
matic channel is constant. Natural channels are non-
prismatic and irregular in shape. However, for ease in
mathematical treatment, their cross-section is usually
assumed to have a regular geometric shape so that

in which
B is generally a function of y

Equation (2.23) then becomes:

3A _ o8y Al 2
a’;'aax‘{w ax
or
a 1 9A
HLegm-S ... (2.25)

in which

< -3l =

Equations (2.1) and (2.21) when combined with Equation

(2.25) become
Q
3¢ tax " 1-O0. . ... (2.27a)
av _18v: g oaa
Tt ox ta o “86,-5+q - - (227b)

These forms were found quite suitable for solution of the
equations on the general-purpose electronic analog com-
puter.

When Q is replaced by AV, Equations (2.27) take
the form

Mg evgmeno (2.28a)
Haviy 832 ps, -5+00 . . . . (2.28b)

The equations can also be expressed in terms of A
and Q by replacing V by Q/A in (2.28). The substitution
results in the following system of equations:

:—': +§-§’-= 1-0. « « « « « . (2.292)
2
)0 ada .q 20 [o® galea _ i
2.9x.03 .(_Az -L.B )-—ax-gA (S,- 5, +G) (2.29b)

Natural channels are sometimes divided into several
sections, each of which is approximated by a prismatic
channel. Under this hypothesis the term G is equal to
zero.
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CHAPTER 111

REVIEW OF THE METHODS OF SOLUTION
FOR UNSTEADY FLOW EQUATIONS

The exact solution of the unsteady flow equations is
a difficult task which thus far has been successful in only
a few simplified cases. However, numerical solutions have
been obtained on the digital computer by the use of
finite-difference approximations. In this chapter, a num-
ber of methods which have been applied to the solution of
the unsteady flow equations are presented. A technique
for determining the restrictions to be imposed on some of
the finite-difference methods as a result of the approxi-
mations underlying them is also included.

Exact Methods

The Saint-Venant equations are quasi-linear hyper-
bolic partial differential equations which are not easily
amenable to solution. Attempts at their integration by
direct analytical methods include the exact method of
characteristics and the linearization techniques.

Exact method of characteristics

Under the method of characteristics the two partial
differential equations of unsteady flow are transformed
into a system of four ordinary differential equations by
the following manipulations.

The equations of momentum and continuity (2.28)
are identified as L, and L, respectively.

A 'S av . g 2A R = .(3.1a

by = i Vix *'B 3x - 8i5, S‘OG) =0 ( )
_ 24 av 3A .

L, =32 s agp rvgy c1r0= 0 .(3.1v)

A linear combination of the two equations is per-
formed using an unknown multiplier A:

av _av 3A 3A
L, +A = |22 4 — A SA & 2A
|t AL, [az a3y (V4 A)]#[ax(aow)okall

-glS_ -8, +G-2p-0 =0 . (32)

The unknown A should be chosen such that Equa-
tion (3.2) can be transformed into a system of two total
differential equations. The expression in the first pair of
brackets is the total derivative dV/dt if

Savemo L 33)

For the expression in the second pair of brackets to be
equal to the total derivative dA/dt the following expres-
sion must hold:

By comparing Equations (3.3) and (3.4) the values of A
are obtained as:

When those values of A are substituted into Equations
(3.2) to (3.4) the following system of characteristic equa-
tions is obtained

L avs \/a% ...... (3.6a)

d
s \h% :—? -slso~s‘+cl-|/ﬂ—u-0)=o. .(3.6b)

. (3.6¢)

gl
"
<
.
=n
3
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:_:’-\,ﬁ- :_f—- g(so-s‘-rc)ﬂ/;%—(l-o) =0 .(3.6d)

The lines in the (x,t)-plane defined by Equation
(3.6a) are called the a-characteristic lines or a-character-
istics, and those defined by Equation (3.6¢) are called
the B :characteristic lines or B-characteristics. Equation
(3.6b) holds only along the a-characteristics while Equa-
tion (3.6d) is valid only along the B-characterjstics.

The system of partial differential Equations (2.28)
has been converted into the equivalent system of ordinary
differential Equations (3.6). This change is desirable if
solution of the system is facilitated by the transformation.
However, the system of Equations (3.6) is also nonlinear
and still cannot be solved by direct methods of integra-
tion.

Linearization techniques

Solutions by direct integration have been obtained
for simplified forms of the unsteady flow equations. In
general, such simplifications involve the linearization of
the equations. The usual way of obtaining the linear equa-
tions is by substituting Q = Qo+ q, A = A, t a in Equa-
tions (2.29), and retaining only first order terms in g and
a. Equations (2.29) thus become:

da 3 _

=52 1.0 . (3.7a)
g _ , %, , 2 2 2
ot ~ ‘ot Ve ax tvg - gyo)ax

= g(a, +a)(s,-5;+C) . . .(3.7b)

where v, yo, A, and Q,are respectively the velocity,
depth, flow cross-sectional area, and discharge rate during
the initial steady uniform regime, while q and a are
respectively the increments in the discharge rate and the
flow area under the unsteady regime.

A single linearized equation is obtained by elimina-
ting the incremental area, a, between Equations (3.7a) and
(3.70).

a’q 2%q , 1,2 alq M1 - O)
ok v, Bar ! {"o ’”o‘ R . (38)
in which

AN=zS5 ~5 +G
°

Solutions for the linearized Equation (3.8) have
been obtained by the Riemann-Adamard method
(Deymie, 1939), by conformal mapping (Masse, 1939),
and by Laplace transform (Lighthill et al., 1955). How-
ever, because the approximations introduced by lineariza-
tion are quite severe, the method is not very accurate and
should be used only for rough computations. Further-
more, linearization requires an initial finite value for the
base flow. The technique is, therefore, not applicable to
the conditions of ephemeral streams and overland flow
where base flow values are usually zero. This same condi-
tion also makes difficult the use of the general method of
characteristics for the solution of this problem.

Direct Electrical Analog

A direct electrical analog can be applied to the solu-
tion of simplified forms of the unsteady flow equations. A
useful application of this method is illustrated below in
which the unsteady flow equations are expressed in the
following simplified form:

a ) ,
2 +B3l=1-0 ... .(39)
ay L ag )
ax | gA se t 55 . . ... .(39

" The segment of electrical transmission shown in Fig-
ure 3.1 yields the following set of equations

@

. . . (3.109)

\

i Be  _ o
= + Cop i

%OLZ—: +Ri=E . (3.10b)

When the sets of Equations (3.9) and (3.10) are co;n-
pared, it can be seen that the following variables are

equivalent:

Electrical Variables Hydraulic Variables
voltage (e) water depth (y)

current (i) discharge (q)

inductance (L) inertia coefficient (1/gA)
capacitance (c) surface width (B)

constant voltage (E )
resistance term (Ri)
current gradient (i")

channel slope (S,)
friction slope (S¢)
excess lateral inflow (I - O)

Use has also been made of other direct electrical analog
techniques which, in general, introduce further sim plifica-
tions in the unsteady flow equations.

12 .
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Figure 3.1, Electrical circuit applied to the solution of simplified forms of the unsteady flow equations.

Finite-Difference Methods

Several methods have been adapted for the numeri-
cal integration of the Saint-Venant equations on the digi-
tal computer. Those methods include:

1. The explicit and implicit finite-difference
methods for the two basic equations of con-
tinuity and momentum.

2. The numerical integration of the characteristic
equations.

3. The mixed difference method.

Difference methods for the two
basic equations of continuity and
momentum

Those methods use a grid of points in the (x,t)-
plane, consisting of vertices of rectangles of sides Ax
and At formed by the system of lines.

o= 0N j = 0,1,2,3,...

EET))

... (3.12)

t = mdt m = 0,1,2,3,...

Values of the dependent variables are computed at
the grid points. With reference to Figure 3.2, the values at
time (m+1) At can be calculated if the solution at time
mAt is known. The difference scheme is said to be an
implicit scheme if the finite-difference formula used for

the evaluation of the x-derivatives contains unknown val-
ues of the m + 1 row, otherwise the solution is said to be
explicit in nature.

t
(m#l) ot =
mel, |j-1 mél,{ ) m+l, |+l
mat
m el m,| j m,|j+]
-1) at
tm-1) m-l,] -1 m-1,] mel] j43
x
G-11ox jax (j+l}ox

Figure 3.2. Point numbering for the implicit and explicit
methods applied to the two basic equations of
continuity and momentum.

Implicit methods

n these methods the difference equations are usu-
ally written at some intermediate point where values of
the variables are determined by linear interpolation, that
is,

13.
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... .(313)

in which
¢ standsforAorV,

and

0<6<1
The corresponding difference formulae are

m+o
20| ™ L [imie i
ol Zox |74 i-?

m )
. 2_‘1‘_’_‘{[“ 'OWE‘ +0 43;::1]‘_[(1’9)0j_‘*9¢;:] .(3.14)

e Gty BN CREY

Equations (2.28) take the following difference form

1 N ,m m mﬂl_n_[_ m m#)
= IA;" -Aj)‘f[(l-B)Aj +0 AT | 7y (i owj“wvm

m+l m m+l} 1 . m
- .o)v;':‘-ev’_l ]+ [(1 -01VHe v ] TEx [n 0)A

- taran Siria ey it ek PRSP

) m - m{l] - . ™ .61 m+i
40Aj':‘l"| NIRRT (1-8) (-O)" +0(1-0);
.- . .. (3169

| m+l m m m+l} 1 . m m+l

a (\j - Vj) + [(I-O)Vj +9Vj 2 ox {1 O)Vj“fevj“
. -1
m m+l m m+l 1 m
.u.o)vj_l -8\'j_l]+s[(l-9)Bj +a£\j ] 5Ex [u.e')».j“
mtl m m+l m m+l

[} - {1 -0 = 1-8)A, +90A,

*0A 0-0)A, Aj-l] g{( WAy fi ]

!'(1-9)[50- S c:]:"
i

T T PN A1)

b

The difference equations for all the grid points of the row
m + | must be solved simultaneously. However, the itera-
tive solution is time consuming. A procedure developed
by Ritchmyer (1956) simplifies the computations to a
large extent by first determining a recurrence formula and
then calculating the values at the entire row in reverse
order. Implicit methods differ mainly by the value choser

14

for the parameter 8. Their use requires a knowledge of all
values at the initial time and at the upstream end of the
channel.

Explicit methods

Most explicit methods used in connection with
Equations (2.28) approximate the x-derivatives by the dif-
ference formula

2 -
e Lmiliel L (317)

These methods differ in the differencing scheme used to
approximate the t-derivatives.

Unstable method. The simplest of the explicit
methods is sometimes referred to as the unstable method.
This method approximates the t-derivatives by the differ-
ence formula .

e v e

e i -
ot

Equations (2.28), written in finite difference form at
point (m, j), take the form

m+) m ot m m m m m m
A, A, +57— A V.., - -
j i YaEx [P (:n "J-l’* Vi (“m Ajea

. . . (3.19a)

-Am-ofj“ = 0

m+l m, at m [m _m BOt m _,m
Vi -Vitaax Y (an vj-l]+ZBAx (Ajﬂ Aj-l)

.. .. (3.190)

- gAtlS°~S‘;Gl;n = 0

Diffusing method. The difference scheme for the
t-derivatives is:

m+l

i 'lz' "°;':|’

... .(320

‘ m
3y j#l
EX at
The difference equations are evaluated at the central point
(m, ).

2T DAY

.?W-.-,n-«:‘.o-‘-‘:'sm,m oo rg WYY 2 N



Leap-frog method. This method uses an approxima-
tion formula for the t-derivatives of the form

aé- : - :
EXrg

Again the difference equations are written at the central
point (m, j).

Lax-Wendroff method. This method assumes all val-
ues to be known at row m - 1, uses the difference scheme
of the diffusing method to obtain values at the m** row,
and then proceeds with the solution using the leap-frog
difference formula.

In the case of the explicit methods, the difference
equations written at the mesh point (m, j) suffice to com-
pute the values at the point (m+1, j). Again, values of all
variables at the initial time and at the channel upstream
end are required.

Numerical methods of characteristics

Various types of difference schemes are available for
solving the system of characteristic Equations (3.6) nu-
merically. In general, numerical solutions are obtained by
making use of a grid of characteristics, or by the method
of specified time intervals.

Grid of characteristics method

The basic computational step under the grid of char-
acteristics method consists of advancing the solution from
a curve on which the variables are known. In general, the
values at the initial time are given so that the values are
known on the line t = 0.

In Figure 3.3, P is the intersection of the a-
characteristic through C and the B -characteristic through
D. All variables are known at points C and D, and the
problem is to determine the coordinates Xp , tp of Pas
well as the values of Ap and V, at this point.

With reference to Figure 3.3, Equations (3.6) can be
written in the following finite -difference form:

ey i’(w_[g%']P o (v ../:gu . (3.223)

Vpr v = ] A-A r
i I 1
e ] B s,

o RER C]CJ ‘%{‘/S{A_lp 1-0), +Vg A’Bcu-mc]: 0 (3.22b)
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+ls,- s, + G|DJ +L [\4’};]? a-o), "Afa_%o u-onDJ -0 (3.22d)

o] C D E x

Figure 3.3. Point lettering for the grid of characteristics
method.

By solving simultaneously the difference Equations
(3.22), the unknowns t,, Xp,Ap, Vp can be obtained.
Likewise, the values of the variables are obtained at all
intersection points in the solution region.

Method of specified time intervals

In this method the solution region is replaced by a
rectangular grid of points. The dependent variables are
known at ail grid points at time mAt and are to be deter-
mined at time (m+1) A t. The computations can be carried
out by using either an explicit or an implicit scheme.

Explicit scheme. With reference to Figure 3.4, the
values of A and V are to be calculated at the grid point
(m+1, j). The x-coordinates of C and D, the intersections
of the - and Bcharacteristics through point (m+1, i)
with the line t = m4t, can be obtained from Equations
(3.6a) and (3.6¢) as ‘

P o -
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g [(@Bl'}”i (\/E] f1-a)

{m+l}at

~ e

at m+1 ]
. . -Tg[(SO-S!i'GL +(s°-s‘+6 n]

-

2 -l Y ‘m —_—
c o *%“"/;Iw, n (V’gA—'B)Dj [(1-0);“*‘+(!-0)D] =0 . (3.25b)

mat

The unknowns V;™*'and A;™"'are obtained by
solving simultaneously the system of Equations (3.24) and
(3.29).

Implicit scheme. In Figure 3.5, a point Pt =
-1bx jax Gthax (m+8,) At, x = (j+8,) Ax] is chosen. Values of the func-

) ) . tions at point P are evaluated by the following interpo-
Figure 3.4. Point numbering and lettering for the explicit  |atjon formula:

method of specified time intervals.

_ o™te _ m m m +1
4p = oj*ax = (1-8;) [u-ex) ¢j+°x¢j+l]+q[“-%‘)¢j

+e,¢¢;;“] e e e e e (326)
T .A.(nf_,%]';‘ ... . (3233)
t
m
= %" atfv - Vgﬁ} .. . . (3.23b)
*p ’-j ( Bj imeat . el i mel, |
J B b=,
F -] E
P
The values of the dependent variables at points C and D
are obtained by linear interpolation between known val- c o
ues at points (m, j-1),(m, j), and (m, j+1). mat . et Th
cam_at [m o m A (3.242)
¢ "ax °j"j-l“v+ “5’,', TN
L am, At m_,m . A m
v laj aj_') lv Ve :B: )j . . (3.24b)
0-1ax 18x 36

Equations (3.6b) and (3.6d) become .
Figure 3.5. Point numbering and lettering for the im plicit

method of specified time intervals.
1 1[ i ST +1
e g ('Jzﬁ},. o ‘“‘KEL] [+

.at, (s -s m)m”. + ls -5 +c;) ] The a-and B-characteristics intersect line x = jAx at C
2 ° i ot e and F, and line x = (j+1) &x at E and D. The t-coord.inates
of those points are obtained by writing Equations (3.6a)

al TN [ ml and (3.6¢c) in difference form along the a- and 3-lines.
'T[H“A_Blj ’l BA_BL][“'O';‘ "“'O'c} =0 . (3259 Values of the variables at those points are then ap proxi-
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mated by linear interpolation between adjacent grid
points. When the values thus established are substituted
into Equations (3.6b) and (3.6d) written in difference
form along lines CE and FD, the resulting difference sys-

tem is:

va L Annl Lam m+l vm
j i ( 1 ! ) . jt j+l
“ KT} + E(mlp at to-o) at

m+! m vmfl m+l

—_ A - -
Ay Aa A a A ot Y5
' g!m]p ae ]' 0' 'V ' \/I& '_;)P[ Ax

mtl m+l

e Al v ve oov™®
) ST, g (v i) [

x

—~ - AT AT
+ VI(AL{\L_ JLIFJ"'] safs, s 0 M}ITB’P“'O’P =0
.. (327a)

\"_“” L . Alll\fl AT vr.n+l .ym
o j—— . "B{Ll I S I +(1-0) + +1
x St ABI P Y x At

m+l .m m+l m+l
oe AMTI AT v -V
i) Rt (v ..‘[—gﬁl RTINS
AN, at ¢ Bl, ax

- Amfl . Am'H Ay v
-\Hx'alp-’”—m:)—]“""t’ v - Vs %]i-."f;—,‘L

- AT AT iy
-v’slﬁL T3 ] Rls,- S +6lp ¢ \/I"Lﬂlp"'m" -

... (327b)

Simultancous equations of the form of Equations
(3.26) and (3.27) are written for all grid points along row
m + 1. and the resulting system solved for values of A and
V at all the grid points in that row.

Mixed difference methods

The finite-difference approximations presented so
far involve the replacement of the derivatives by a differ-
ence quotient, and are crude when compared with numeri-
cal methods available for the integration of ordinary dif-
ferential equations. Nevertheless, some of the latter
methods can be adapted to such hyperbolic systems as the
unsteady flow equations. When the x<derivatives are
replaced by a difference quotient, Equations (2.28)
Written as x = jA x become:

dA .
—_ = {1-0),
L ABY VA = O) (3.28a)

Y

s L
LAY

av.
-2 +VjAVj+-g;‘AAj = .;[so-s‘+c)j . (3.28b)

.

Equations (3.28) form a set of ordinary differential equa-
tions in the variable, t, and numerical methods, such as
the Euler method, the Adams' method, and the Rungc-
Kutta method, can be used for their integration.

Stability study by the perturbation technique

The perturbation method has been found to be use-
ful in determining the stability of a differential or a differ-
ence system of equations (von Neumann and Ritchmyer,
1950). In this method a small perturbation is super-
imposed on the desired solution, and it is determined
whether the perturbation grows with increasing time.
Ritchmyer (1962) concluded that the method applies well
to numerical solutions of partial differential equations
because he observed that instabilities in such solutions
manifest themselves “as oscillations of short wave length
and initially small amplitude superimposed on a smooth
solution,” and that “they generally appear first in a very
small region of space.” Thus, when the coefficients of the
system of equations are smooth functions, they can be
assumed constant in this region and the presence of u
boundary can usually be ignored. Consequently, the lin-
earized equations can be used in predicting the growth or
decay of the instabilities. Furthermore, it has been shown
that stability conditions for the numerical solution of par-
tial differential equations with variable coefficients arc
essentially the same as those known for the case of partial
differential equations with constant coefficients (John,
1952),

The procedure of the perturbation method involves
replacing the dependent variables of the system of partial
differential equations by the perturbed solution. This
leads to a system of linear partial differential equations in
the disturbances called the equations of first variation.
Those equations are used to predict the behavior of the
disturbances.

Equations of first variation

When the perturbed solutions A + §A and V+ 6V
are substituted for A and V in Equations (2.28), in view
of the above assumptions, the following system is ob-
tained:

3 ? 9 .
-a—if)A#V-;-xOAOAE-;OV = 0 c . (3.293)
3 . a _Ea.
3 9V eV 0V 5n0A =0 (3.29b)

17

Ly e el e At el

s e e e




Equations (3.29) are the linear equations of first
variation for the basic equations of unsteady flow. They
can be used to study the stability of the various difference
methods,

The von Neumann stability criteria

The exact solution of Equations (3.29), which
would give information concerning the behavior of the
disturbances § A and 8V, cannot be found by direct in-
tegration. The usual procedure is to assume a solution at
some time and to determine whether or not the disturb-
ances grow without bounds at a later time. Under the
assumption of constant coefficients, the stability of the
difference system can be explored by making use of the
fact that an initial exponential function remains expo-
nential. Thus, if the following are assumed as initial values
for 6A and §v:

fhex -
BA(x,0) = BA_o *

.....

bvix,0} = bVo e thx

.....

Jin which

Ao, V,, k are constant and Kk is real, then the
solution of Equations (3.29) at time t can be assumed to
take the form:

fkx + Gt
°

.. .. (3319

6A(x,t) = BA

lkx +a¢

. . . (331b)

bvix,t) = OVD °

At the grid point (j, m) x = jax and t = ma t. Equations
(3.31) thus become:

5AT = BA g™ .. .. (3323

svl = ov g™ L. (3320)

in which

........

The disturbances will not grow without bounds with
increasing time if I&;l <1 for all real k. In other words,
all values of £ must fall on the unit circle of the complex
plane. This criteria was first used by von Neumann and
Ritchmyer (1950) to study the stability of differential
and difference equations of unsteady flow, and is gener-
ally known as the von Neumann stability condition.
Ritchmyer (1957, 1962) has proved that, in the case of
the equations of unsteady flow, the von Neumann condi-
tion is necessary and sufficient for stability.

Using the procedure described above, stability
studies were carried out for the explicit and implicit
finite-difference methods applied to the two partial differ-
ential equations of unsteady flow. The results of these
studies are summarized in Table 1. The stability condition
which the explicit methods have to satisfy is usually re-
ferred to as the Courant-Friedrichs-Lewy condition in
honor of the investigators who first discovered it (Courant
et al., 1928).

The results shown in Table 1 agree with those
obtained by Ritchmyer (1962) who used a somewhact dif-
ferent approach restricted to those difference methods in
which both the time and space variables are differenced.
The chief advantage of the perturbation technique pre-

.sented here is that it can be applied to the study of the
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stability of difference, differential, as well as mixed differ-
ential-difference hyperbolic systems.

General comments

The method using the grid of characteristics does
not present stability problems and is considered the most
accurate of the numerical methods for digital computers.
However, this method presents the disadvantage of finding
the solution at odd points in the (x, t)-plane, and it would
be difficult if not impossible to organize the computa tions
so that the intersections of the characteristics occurr ed at
the grid points of a rectangular mesh in the (x, t)-plane.
When the time distribution of the dependent variables is
needed at some fixed points of the x-coordinate, as is the
case in runoff studies, then tedious two-dimensional inter-
polations in the characteristic grid are required. This
operation can be carried out only on a computer having a
memory sufficiently large to contain all data points.

The methods of specified time intervals, althhough
less accurate, involve only one-dimensional interpolation,
and the values of the variables on a line x = constarit can
be obtained at different times. However, these methods
share the disadvantages inherent to the explicit and im-
plicit methods. .
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Table 3.1. Stability conditions for the implicit and explicit finite-difference methods.

—
Method £

When stable

'

1-i it_x (Vi: Y g% } il -6) sin k &x.

g e e a e

Implicit At /T always

j —— t-/g— | sin k&Ax

1+ Ax (V_ \‘,gBlsm

At | A _ .

Unstable 1-i -A—E- lVi"J Ex ’ sin kAx never
. At A\ . At A

Diffusing cos kAx-i A (Vi'/g ) lsln kAx e (Vi Ve 5 ”< 1

A . f
Leap-frog -1 Zi {Vi g % ) sin kAx

/’ At e el mawse A.. e em o e - ———
£\1-] = vt/ g = |si
) \\/1 [Ax ‘V Y sin kAx

A
—

%f( (V-‘f"/g%}-'

Lax-Wendrof
frog methods.

Same as the diffusing and leap-

2——:c (Vt \/g%) <1

The main advantages of the implicit methods are
that they can be made unconditionally stable, and the
calculations are well organized on the rectangular grid of
points. Although it is generally believed that the implicit
methods are most suitable for river problems, some in-
vestigators (Liggett et al., 1967) have reported instances in
which they were forced to abandon an implicit method
which would not give the desired accuracy. -

The explicit methods have the advantages of sim-
plicity, and their use involved somewhat less labor. Their
chief disadvantage is that they are required to satisfy the
Courant-Friedrichs-Lewy condition in order to be stable,
as shown in Table 1. This condition places severe limita-
tions on the size of the steps & x and At. In the case of an
initially dry channel the stability condition may lead to
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ridiculously small values of the steps x and t. This
situation makes prohibitive the use of explicit methods
when dealing with a natural watershed where the channel
is generally several miles long and where the duration of
the event may be several hours.

Some investigators (Thirriot et al., 1967) have re-
ported that in the mixed difference method the computa-
tion is reduced when compared to other difference
methods. In addition, for an initial steady state, the
steps Ax and Af can be chosen much larger than those of
the explicit methods. The Courant-Friedrichs-Lewy condi-
tion, however, still imposes serious limitations for an ini-
tially dry channel. Furthermore, the method requires that
the derivatives of the variables be known at the initial
time.
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CHAPTER IV

THE ELECTRONIC ANALOG COMPUTER
AND THE PARTIAL DIFFERENTIAL
EQUATIONS OF UNSTEADY FLOW

The Analog Computer

The basic equations of unsteady flow were solved
using an electronic analog computer at the Utah Water
Research Laboratory. This electronic analog computer is a
general-purpose machine which can perform operations
such as addition, subtraction, multiplication, division, in-
tegration, and function generation.

The electronic analog computer is particularly

adaptable for use in the solution of ordinary differential

equations both linear and nonlinear, because it can per-
form directly such sophisticated operations as integration
and differentiation on a continuous basis. In addition,
because all operations take place in parallel on the com-
puter, the “turn-around” time is short. This advantage and
the ease with which modifications can be introduced into
a problem or its solution enable the analog computer to
handle particularly well the problem of model regulation
where it is necessary to resort to “trial and error’ explora-
tions by altering various parameters within the mathemati-
cal model of the system under study. The operator is
therefore able to quickly investigate the effects of a para-
meter change on the solution, and thus is provided with
increased insight into the nature of the problem under
consideration. The analog computer is able to output a
continuous solution with respect to only one independent
variable. For partial differential equations, a solution in
terms of the remaining independent variables is achieved
by a difference technique.

Solution of Unsteady Flow Equations
on the Analog Computer

The differential-difference equations

The analog computer handles only ordinary differ-
ential equations directly. In order to use it in the solution
of partial differential equations, the equations must be
replaced by a set of equivalent ordinary differential equa-
tions. Conversion of the partial differential Equations
(2.28) into ordinary differential equations involves treat-
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ing one of the independent variables by finite-difference
techniques (Johnson, 1963; Jackson, 1960; Mackay et al.,
1962). This procedure is accomplished by dividing the
range of the independent variable selected into a number
of finite intervals. Either one of the two independent vari-
ables can be differenced. However, because runoff data
are often given in the form of an outflow hydrograph at
the watershed outlet, it is convenient to treat time as a
continuous variable and to divide the channel length into
N equal intervals of length Ax, as illustrated in Figure
4.1. The differential operator D, = 3/ & is then replaced
by the approximating difference operator 4, and the un-
steady flow Equations (2.27) written at section x = jAx
become:

%‘iux-OoAQ’ ....... (4.1a)
%i = g5 + 8G - g5 - ',‘_,‘Ax.‘\j - El'Aijz (4.1b)
Q = AV (4.1¢)
3
in which
B = a9t a0, Ay e .. (4.2)

and not all a’s are zero.

According to the difference quotient used for the
x-derivative, the system of differential-difference Equa-
tions (4.1) will be either explicit or implicit. A backward
or forward difference formula will yield an explicit sys-
tem, while an implicit system is obtained when a centered
difference quotient is used. The stability of the system of
Equations (4.1) is closely related to the difference quo-
tient used. :
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Figure 4.1. Flow profile illustrating finite increment procedure adopted for the flow model.

Stability

The equations of first variation (3.29) derived in
Chapter I will be used to study the stability of the
differential-difference equations. When the space deriva-
tives are differenced, Equations (3.29) become:

a
28A + AS BV + VABA =0 . . .(4.323)
) .
S6v + va sV + Basa =0 .. .(4.3b)
A typical Fourier series solution is
5A = 5Aoe“"°" tat L. (4.4a)
ikjax + at
BV 2 6ve ... .. (4.4b)
o
or
6A = BALE . . .. L . L. (4.5a)
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6V = 6V°f.i£
Again, for stability all values of £ should map in the unit
circle of the complex plane.
Explicit schemes

Backward difference quotient. A typical backward
difference formula is ’

When Equations (4.5) and (4.6) are combined with Equa-
tions (4.3), the equations of first variation become:

. AB Y V6 A
a1 ; i.
aadle + 2l -0 s 2wk -l =0
........... (4.72)
. AV . . 5 A
i -1 4 « _
asvele v =2l - 7l 0 el L gl =0
.......... (4.7b)




From Equations (4.7), @ is obtained as:

a = é {cos k &x - 1 - j sin k &x) (V f\’g-l-;) . . (48)

Therefore

coskbx -1 4 FA sink&x .. 4+ LA
¢ o exp[ =t veggoe - B2 (vqépn]

..........

£ will map in the unit circle of the complex plane if

[6] = emp[222k8z=tivefZy]sa . . . (4.10)

Since t =0, condition (4.10) is met for all real k if

In other words, the backward difference formula
can be used only if waves or disturbances are stationary or
travel downstream. Therefore, this scheme applies to criti-
cal and supercritical flows only.

Forward difference quotient. In this case, the com-
mon form of the difference operator is:

The corresponding value of £ is:

1 - kA A
R [PV SRy N

......... . .(4.13)
The absolute values of £ are less than one if
v ?\/;_% =0 L. (4.14)

P——
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Condition (4.14) requires that the waves or disturb-
ances be stationary or that they propagate in the upstream
direction with a celerity larger than the flow velocity. This
scheme can then be used in connection with critical flow
and with subcritical flow with backwater effects due to
some obstacle at the downstream end.

Implicit scheme

When use is made of a centered difference formula
of the form

PO Y
a8, = L= (4.15)

£ takes on the following values:
g o exp[-l“—:xiA_‘(V !Vs% )‘] C .(4.16)

Since |£]= 1, while its argument is (sin kAx)/ 8x
(V ££(A/B) ) t, £ maps on the circumference of the unit
circle in the complex plane for all real k. Therefore, the
implicit differential-difference system is always stable, and
is applicable to any regime of flow.

Programming the equations

Since the implicit differential-difference system is
unconditionally stable, it will be used throughout this
study. When Equation (4.15) is combined with Equations
(4.1) and (2.20) the following system of differential-
difference equations is obtained: :

dA Q,, 9 _,
R Il -l CR L)

av '
i 2__g B L (vE . 2)
<L = g5 +8G - 8KV - 7R3 Ay Y 7RAR Ayt B ("m Y.

.

(4.17b)

..........

in which the slope of the energy line is taken as KV 2
insteady of KIVIV, because the flow velocity is always
positive.
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Magnitude scaling

Equations (4.17) should be scaled with respect to
magnitude in order to utilize the full voltage range of the
computer elements, and to permit a ready interpretation
of voltages read from the computer directly in terms of
the units of the problem. When magnitude-scaled Equa-
tions (4.17) can be written in the following form:

{9+ 1lm

t .
(‘looA.]_ Iy lloox'_ Om (xooo‘ .
shal” ), [Paba e 1 (sl Om 2az|A iy
[]
100Q, Q _im 1ooo._l)
+ _— dt
|°1H|u) 28x[Aj1m |9 - 1lm ... (4.182)
u:ov.)= '[loogso — moviz} oAyl
. 'leM A IV,IM M 'vjle ZBAXIVjIM
2
(IOOAI_}]) . gGM lo_gl * RIA._llM IDIJA!_I} i A' + 1M
IA]Ql]M lV’IM< GM Z'BAIIV).'M IAi_I|M 448|Vj|M

v ll& (mviz")]m . (4.18b)

+
BV, vjz+ e

2
(IOOV“*.)
2
¥+ s
100Q, \'4 100A \ 100V
___l)u I':.L‘GM_L!].& ___J)(____i) .. (4.18¢)
[Piv {Pilm

[S51m Vilm

in which the subscript M indicates the maximum expected
values of the physical variables.

Time scaling

The speed of the computer solution can be altered
by choosing a time scale factor h such that

he T ... (4.193)
or
at = e ... (4.19b)
in which
t represents time in the physical system under
investigation

T represents computer time

Equations (4.18) scaled with respect to time appear as:
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looa,) [ Iy ‘Ml_ilml.fiﬂ‘—
M) L Ll Vi b Ml O ZhAx| A5l

(’:ml“); R 9 - ilm !mmi"”ep . . (4.209)
i+ 1M

zhAxlAle “oj R llM
100V, T [ 10088
il LMVilm

2
gKI:.IM(IOOV. ) ) g[A.“lM

lijIM ZhBAlej|M
o \
moA.“)+ :GM(E,;_E.]+ BlAy alm [10%.1) . vj+l|M
lAj+ IIM ' IV" GM ZhBax V)lM IAj . IIM éhA:IleM
2 2 2z
100V, l) vy e [mwi - l)" ar
2 4hax|V. 2
. “’;+1|M ’ [Vsim |vi -,|M ] (4.20b)
100Q, \'Z 100A .\ f100V
(l.Q_J.} Pabae e A—“‘)(Iv—l\ .. (4.200)
TV EETR )

In this study the computer solution was speeded up
by choosing a time scale factor smaller than unity.

A computer program for Equations (4.20) is shown
in Figure 4.2. However, because of their implicit nature,
these equations applied to a particular section, j, and are
not sufficient to calculate. the variables at that section.
Therefore, equations similar to (4.20) are written at each
channel section, and the resulting system solved simulta-
neously. Figure 4.3 shows the computer program for the
equations written at the first ten sections of the channel.

Effects of the time scale factor
and the resistance term on the
stability of the implicit differ-
entigl-difference scheme

With the introduction of the time scale factor h and
the resistance term KV ? the equations of first variation
take the following form for the implicit scheme.

4 A v
—-_0 — 10 - B —— - A E3
i ATy v Visl Vi n]" zhax(”)n b jal} 0

(4.212)
4 KV v
Lp DY p N
r-R AUl Aol LT R
—B .
Lol LU 1) =0 (4.21b)
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The corresponding values of £ are

. By
£ = ezp[-i 51:::" V"“iﬁg r] .. . (4.229)
-]
aba

EZ ] exp[- Ehﬁ' -4 °i:Asz“ Vv 3+ WV‘:’ T] . (422b)
Therefore

[6] = 1. (4.23a)

[62) = o[- BY ). (4.23b)

Since K, V, h and 1 are always positive, Ey¢ 1,
the system is always stable. It can then be concluded that
the introduction of the time scale factor h and the term
KV 2 does not affect the stability of the implicit differen-
tial-difference system.

Error analysis’

Two types of error can be distinguished in the ana-
log solution -of the partial differential equations of un-
steady flow:

1. The truncation errors which are mathematical
in origin.

"The computing errors which are due to the
imperfections of the computing machine.

2.

Truncation errors

The truncation errors are introduced by the use of
finite difference approximations for the x-derivatives.
It can be shown that the explicit difference scheme
approximates the differential operator to the order 4x,
while the implicit scheme introduces a truncation error
of the order Ax2.

Because there exists no known exact solution to
genera] shallow water equations, evaluation of those errors
is not possible. Nevertheless, the truncation errors can be
regulated by the choice of the step Ax. For example, a
reduction of Ax decreases truncation error. However, this
procedure requires the use of additional computing com-
ponents and consequently, increases the computing errors.
Further, it has been shown that inherent instability in the
analog solution of partial differential equations sometimes
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increases as the interval is reduced (Mackay and Fisher,
1962). The h?-extrapolation method has been proposed
lo compensate for the truncation errors (Hartree, 1949,
Miura and Iwata, 1966), but the use of this method also
results in an increase of the computing errors.

An alternative method of reducing the truncation
errors is the use of a higher-order difference approxima-
tion (Fisher, 1956, Mackay and Fisher, 1962). This tech-
nique avoids the increase in the computing elements, but
involves increased complication in the circuitry. Another
method based on the truncated Fourier series has been
proposed to make correction for the truncation errors
(Dieters and Nomura, 1968), but this procedure is mean-
ingful only if used in connection with a hybrid computer.

Computing errors

The computing errors originate from the in-
accuracies of the computing elements such as potentio-
meters, amplifiers, and multipliers.

Error propagation equations. The

differential-
difference equations can be written as ’

- e i By Ap oo VL Vo L0 . (4240)
dv,
E1. 2 AL An . VL Vel luS) L L (4.24b)

The solution of this system on the analog computer
involves the generation of the function f j and their inte-
gration to produce A; and V;. In those processes, errors
are introduced due to amplifier drift, multiplier noise,
potentiometer loading, discretization of the input func-
tions, and variation in input voltages. Consequently, the
exact operations

T
A = L g1 A A Vi YV, LoOK. . (4.252)

A v v, . (4.25b)

(A o1 Ve Ve S

j-1m et

are implemented on the electronic analog computer as
'\
FYR B al LA v v Lo E dr
j 'o 2i- P Tiert Tiet Tjen Zj-l]

.. . (4.2623)
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it e o“ EZj]d'

... (4.26b)
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The computing errors are the differences between
the computer solutijons and the exact solutions, or

=
Ba, = A, - A, e ... (4279)

. . . (4.27)

Making use of the Taylor series expansion and neg-

relationships can be derived:

* *

*
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* * * *

*
., V.. V, s
G35 e A e Vi Yy Ve 5

= A A e Vo Ve Ve So!
el gaf,. at
vz (Tﬂaak + a_vzir"’x) .. . .. (428b)
kej- 14 Mk x
By .combining Equations (4.25), (4.26), (4.27), and
(4.28) the computing error propagation equations are ob-
tained as:
j*l A€, of .
4 2j-1 2j- 1,
= BA. = 6A + v, + E,.
dr ) k=£j-‘ aAk k BVk k 23 (4_29a)
j#l Af. af,.
d = S} —2i (4.29b)
=56y, = 6A + 5v. + E,. - .
AR TN SR :
or
A v A
d j-1 j=1 S hng
#0A % AV P max Ao T Ak Tl
v
jr1
Thax Cfie1 T E2yan (4.30a)
Fl i1 RKV. 5
3V ° TmBax 0.1t Insx Svi v Y
VA“
WEER 0A e 1 max Ve By (4.30b)

lecting terms of order higher than one, the following

-N

The forcing functions E; are composed of a num-
ber of primary errors of the individual computer elements,
and their systematic determination is beset with many
difficulties. Further, the error propagation equations are
nonlinear and cannot be solved by direct methoeds of in-
tegration. To facilitate the analysis of the errors, the non-
linear system (4.30) is replaced by the following linear
system
A

d A v
704 " maxo V-1t e A1 T Thax Vi
_v_ ... (431a
Thox 281 Y By ( )
KR —K Y 5 . BKV ¢
w0V meax oAy P Ak Vj-1 T Y
—8 . =Y 5
eax Chy e T Znax o vier t By . .. (4.31D)

in which A and V are assumed to be constant.

Computing stability. The difference between the
error propagation Equations (4.31) and the equations of
first variation (4.21) is the addition of the forcing func-
tions E,;y and Eyj in Equations (4.31). Since the
error propagation equations are nonhomogeneous, the
condition for stability of those equations is more restric-
tive than that of system (4.21). The error-propagation
equations will be said stable if, for all finite E, the disturb-
ances 6 A and 6V remain finite for all T. This condition
will be met if the solution of the homogeneous equations
remains finite for all T and goes to zero faster than
1/t (Vichnevetsky, 1967). A Fourier series solution of
the homogeneous system was obtained as:

5V° T
lV + AW’F-\'A}}

... (432%)

. Jainkx
Y o g

bv

bv .
j h h-m’}].
-]

... (4.32b)

X sinkx o
s B Vo exp [' Kv - ‘{——Ax (V + AB—A

Because the values 6A; and 8V as given by
Equations (4.32) remain finite for all T and go to zero
faster than 1/ T when T~ =, the error propagation can
be said to be stable.

Note that 8A; and &V, will go to zero faster if
the time scale factor h is less than one. Therefore, & value
of h smaller than unity strengthens the stability of the
error propagation while a value of h larger than one weak-
ens it.



CHAPTER VY
THE SURFACE RUNOFF MODEL

The flow process considered here is that generated
from rainfall on the surface of a drainage basin. It includes
only that portion of the runoff cycle shown inside the
dotted line in Figure 5.1. As a.consequence, the surface
model described here is restricted to the following situa-

tions:

1. Short-time duration runoff events in which
interflow and groundwater flow play no part.

2. Watersheds in which infiltration and seepage
water does not reappear as surface flow within
the watersheds.

3. Runoff events for which interflow and
groundwater flow rates, if any, have been cal-
culated separately and are known at any point
of the drainage basin.

| Evaporation I

A \

—— — p— — —

IPrecipitation, PIJ

Interception

Y

When rainfall occurs over a watershed, only part of
the rainfall appears at the outlet of the basin. The remain-
ing portion of the rainfall is accounted for as losses on the
watershed. Some of the rain which falls in the early part
of the storm is both intercepted by the vegetal cover and
stored in depressions in the soil surface, from where it
eventually either evaporates or infiltrates to the upper soil
layers. The remaining part of the rainfall is the effective
rainfall which gives rise to overland and channel flows
while being depleted by infiltration and channel seepage.
Thus, the model discerns three phases in the surface run-
off process. First, the phase in which an effective rainfall
is produced. Second, the overland phase in which water
flows over the land surfaces toward an established chan-
nel. Third, the channel phase whereby water flows
through the channel system, and ultimately results in an -
outflow hydrograph at the outlet of the watershed.

Depression | Water at
Storage - Ground Surface

Overland

Channel Flow Surface
Flow Outflow

r— 1

| Infiltration I )

—_— ]

| -
Channel
Seepage __I

Y
|Inﬁ1tration I »1 Root Zone |

Interflow

r——‘ Storage

vaapotranspi ratioﬂ

Figure 5.1. Schematic diagram of the runoff cycle.
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cof the Watershed

The watershed is divided into Z subzones on the
basis of its physiography. Each subzone, which is in fact a
small drainage basin containing only one main stream
channel, is replaced by an equivalent subbasin having the
same surface area as the subzone, and composed of two
identical rectangular sloping planes transected by the main
channel as illustrated in Figure 5.2. The rectangular planes
which constitute the field of motion of the overland flow,

a, Natural subzone

b. Equivalent subzone

Figure 5.2. Sketches showing natusal subzone 3 and its
equivalent subzone.

have a width equal to the length of the main stream chan-
nel within the subzone, and a slope which is an average
between the land slope and the slopes of the smaller tri-
butary streams of the subzone. The portion of channel in
the equivalent subzone is assumed to be a straight channel
having the same length, average slope, and width as the
corresponding segment of the natural meandering channel.
The stream channel is fed on both sides by outflow from
the sloping planes, and at its upstream end by outflow
from the preceding subbasin. A detailed schematic diz-
gram of the surface runoff model is shown in Figure 5.3.

Effective Rainf2ll Rate
The rate of effective rainfall in Figure 5.3 is ob-

tained by substraciing the ietention rate R, from the
rainfall rate P .

Rainfall rate

A digital computer program has been written to in-
tegrate point precipitation measuremenis in terms of both
time and space (Kwan et al., 1968). The program involves
the use of interpolation techniques to determine isohyetal
lines over a waterched for a given interval of time At. The
points at which each line crosses the subzone boundary
are located, and the elemental areas bounded by two adja-
cent isohyetal lines and the subzone boundary are calcu-
lated. Elementai rainfall volumes are then computed
according to the formula .

N 1))

in which
a; is the elemental area
pi  and pjsp are the depths of rainfall on two ad ja-

cent isohyetal lines.

If the elemental area is bounded by one isohye tal
line and a portion of the subzone boundary, rainfall values
are determined by interpolation at several points along the
portion of the boundary; then the rainfall depth over the
area is computed as the average between the value on the
isohyetal line and the average of the values at the chosen
points along the boundary.

The rainfall volume over the subzone during the
period of time At is computed by summing the volumes
over all elemental areas comprised in the-subzone, or

voL =L ¥
i

A )

wision of the total volume obtained from Equation (5 .2)
vy the subzone area and by A t, yields the rainfall rate
over the subzone for the time interval At, that is,

(5.3)
Zetention rate

Losses due to the combined effects of depression
storage and vegetation interception are termed retention.
Once the vegetative cover becomes thoroughly wetted a nd
the surface depressions are filled, additional retention
losees become very small. In general. the retention losses
can be expected to be relatively high at the start of the
storm event and to become negligible as the event pro-
gresses. An exceplion is the case of an initially wet water-
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Figure 5.3. Flow chart for the surface runoff model.
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shed where the retention losses can be assumed to be
equal to zero. It is assumed that the maximum rate at
which rainfall is lost to retention storage is given by the
following expression (Riley, 1967):

R_()=k (R -R (1)) .. (549)

in which
R is the retention storage capacity of vegetation
and land surface, and

t
R () = [ Rdt A )
s LT

The actual retention rate, R, is given by the follow-
ing equations:

R_=0 vu P =0, ... .(563
R_=P_ . i 0<P<R._ . .(5.6b)
R_= R, . P 2R . ... . (5.60)
The effective rainfall rate is then obtained as
P, =P R N W)

The program for computing R, and P, is shown in Fig-
ure 5.4. Obviously, there will be no water available for
surface runoff and infiltration until the rainfall rate ex-
ceeds the retention capacity rate.

Overland Flow

The rectangular sloping planes of the equivalent sub-
zones of the model are treated as wide open channels, and
the unsteady flow equations are used to obtain the dis-
charge per unit width, q,, at the downstream edge of the
planes. The overland flow equations are obtained by sub-
stituting y; for A;, q; for Q;, P, forlandf, forQin
Equations (4.20). The term G is equal to zero (the shape
factor ais constant in Equation (2.26) and Equations
{(4.20) become:

llooyj)=f'r['PelM Iloope)_ I, It xoo:r)
VWil % Uil VPenad P JYilm e ]n

100 qj“ R lqj'llj-i 100 qj-l\ . i
i \Pjafa [ 2AxYiy |“j-1|M’ .- (5.82)
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Infiltration rate on the planes

The maximum rate at which water can enter the soil
at a particular point under a given set of conditions is
called the infiltration capacity rate. From his experiments,
Horton (1933) found that this capacity rate has a max-
imum and a minimum value. The maximum value for a
given soil occurs at the beginning of a rainfall event when
the soil is dry. As the soil moisture deficit is reple nished
and the soil crumb structure is changed due to moisture
absorption, the capacity rate decreases until it approaches
a stable minimum. This minimum is the percolation rate
of the soil profile. Under conditions of saturation, or for a
watershed initially wet, the infiltration capacity rate at
any time is equal to the minimum capacity rate.

According to Horton, the infiltration capacity curve
can be represented by an equation of the form:

ke
fep St tU - Vet . (59)

A program to generate  , is shown in Figure 5.5.

The actual infiltration rate on the planes is de-
pendent on the effective rainfall rate and its relation to
the infiltration capacity rate. If t, denotes the time at
which the rainfall starts, t, the time at which the effec-
tive rainfall rate P, exceeds the infiltration capacity rate
fer, and tg the time at which the overland flow stops,
then the actual infiltration rate per unit area can be de-
fined by the expressions:

<t < -
tosr<t, . f = P

. . (5.109)

RN . fo=f .. (5.10[7)
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Figure 5.4. Computer program for computing the retention capacity rate, R, , and the effective rainfall, P .

It is emphasized that infiltration is assumed to occur
at the capacity rate as long as water is available in deten-
tion storage on the watershed.

Initial conditions

The solution of Equations (5.8) on the analog com-
puter requires that the values of V and y at all sections be
known at the initial time. In this model the sloping planes
are treated as initially dry channels so that

t =0 ,y(0 =0 , and Vj(°)=° .. (5,

Other conditions could be used if the calculations
were to start at a time different from that at which the

rainfall started.
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Upstream boundary conditions

The subzones were established such that no flow is
assumed to cross the upstream section of the sloping
planes (see Figure 5.6), that is,

QY =0 (5.12a)
Voo L (5.12b)

If it is further assumed that
L4 T £ S (5.12¢)

then all variables are known at section 1, and computation
can start at section 2.

e e m e S
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Figure 5.5. Computer program for the generation of the infiltration capacity rate function, fer .
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Figure 5.6. Flow profile for the equivalent plane showing boundary conditions for overland flow.



pownstream boundary conditions

The downstream edge of the sloping planes is treat-
ed as an overfall (see Figure 5.6). Thus, when the overland
flow is critical or supercritical, the downstream end can be
considered as a continuing plane, and there is no need to
alter the equations of flow at that section. However, if
subcritical flow prevails on the planes, the flow at the
downstream section is critical, and the momentum equa-
tion is then replaced by:

When the implicit scheme is used the difference for-
mula (4.15) can be used at the downstream section by
assuming that

Channel Flow

The channel system is fed on both sides by the flow
from the downstream end of the sloping planes, so that
the term I in Equations (4.20) is replaced by 2qri

Seepage rate in the channels

From his experiments on seepage, Darcy (1856)
found that the rate of seepage through a column of soil
increases with the depth of water over the soil surface.
The infiltration capacity rate should, therefore, be ex-
pected to be higher with higher depth of water. In the
case of overland flow, the depth was small so that its
influence on the infiltration rate was assumed negligible.
The infiltration capacity curve given by Equation (5.9)
can be looked upon as the seepage capacity rate curve
under conditions of insignificant depth. But with a signi-
ficant depth, as is the case for channel flow, the seepage
capacity rate F, can be assumed to be

in which
f, isgiven by Equation (5.9)
y is the depth of channel flow
c is a constant which depends on the soil per-
meability and the distance of the water table
from the ground surface

Equation (5.15) is somewhat similar to Darcy’s law
(Amisial et al., 1968).
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The seepage capacity rate per unit length of channel
is given by:

qcrg = BFcr

in which B represents the average width of channel.

If t, represents the starting time of the storm,

o the time at which the channel inflow 2q,, exceeds the

seepage capacity rate q..., and t; the time at which

channel runoff ceases, then the “actual seepage rate
q,; per unit length of channel can be obtained as

<t<
Let<e q

(5.17a)

(5.17b)

.....

<< ..
Intt' q = q

Again attention should be called to the fact that
seepage will continue at capacity rate until water is no
longer available in the channel.

For channel flow the programming Equations (4.20)

become:

e - &
Alm (Tl%ﬂ]'dt (5.182)

(woo L_I_M
_u_(l)

_1%am
AN iy

(l_oo v, f [loo 8s,
l"i!M) A
100 A g8G
_1_)“ o (i
(I_"'MIM ’hlvaM( Gyl '

“IM (molm) 'v;'_JMI (movJ 1)}“ (5.18b)
M

‘IA|'+1 It

' j+l|M ZhAx
vie ! B iim

Bl (1004, 1\
ZhBAXVJ'M 'Aj-‘l'M

4hAx|V ,qu»),M 4hAx'V ,V 1,M
100Q; . 100 A\ {100 V_
(_L) H ) (5.18¢)
IQJ'IM JIM JIM Viln

Initial conditions

Values of the variables A and V at all sections must
be known at the starting time of computation. In the case

e oot BT e = it e it o e
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of an initially dry channel thosc values will be equal to
zero.

Upstream boundary conditions

Either one of two conditions can prevail at the up-
stream end of a channel depending upon whether or not
the drainage basin under consideration receives the flow
from a preceding basin.

1. If the watershed receives no flow from a pre-
ceding watershed then

If it is further assumed that A, = A, orelsey, =

¥, then computation can start at section 2.
2. If, however, the upstream section of a channel
coincides with the outlet of a preceding water-
shed, then the outflow and stage hydrographs
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will be known at that section. The difference
formula (4.15) can be used at that section by
assuming -
¢-l = 61
Downstream boundary conditions

In general a relationship between discharge and
depth is available at the outlet of a watershed. If such an
expression is not available, a relationship between the
depth of the cross-sectional area, the velocity and the dis-
charge can be developed on the basis of the geome try of
the outlet section.

Conditions at the junctions

At a junction the flow in each branch is routed
separately, and the resultant outflows are combined by
addition to yield the flow at the junction.
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CHAPTER V1

PROCEDURES OF MODEL
REGULATION AND VERIFICATION

The analog program shown in Figure 4.3 provides
the solution to the shallow water equations for the general
case of unsteady flow. It is necessary that the program be
adapted to the particular flow conditions found on a
watershed. Also, some unknown parameters are included
in the runoff model presented in Chapter V. The model
must be fitted to a particular watershed by determining
numerical values for those parameters applicable to the
watershed. These fitted values are then checked by a veri-
fication procedure.

Adaptation of the Analog Solution
to Flow Conditions of a Watershed

In order to adapt the solution program to a particu-
lar watershed, it is necessary to adjust the sign and the
value of the dependent variables in terms of actual condi-
tions and the physical layout of the space coordinate
system. Surface runoff consists primarily of gravity flow.
Consequently, by choosing the x-axis in the direction of
the slope of the channel the flow will be in the direction
of increasing x, and therefore always will be positive.
Further, if the x-axis coincides with the center line of the
channel bottom, the flow depth will be either zero or
positive. Under these conditions neither the flow depth
nor the flow velocity can be negative. This is implemented
in the analog program by the introduction of two diode
limiters which limit the values of the flow velocity and
depth to positive values only.

Because of the losses to retention storage and infil-
tration, surface runoff does not start at the same time as
precipitation. The model assumes the flow to be zero until
.the precipitation rate exceeds the retention and infiltra-
tion rates. This condition is easily met for the flow depth
and area, since these quantities are primarily the result of
the integration of the difference between the precipitation
rate on one hand and the retention and infiltration rates
on the other. However, with the presence of the constant
slope term in the momentum equation, the velocity can
assume values irrespective of the flow depth and the pre-
cipitation. This difficulty is overcome by the use of a set
of comparators which prevent the. computation of the

flow velocity from starting until the flow depth reaches a
specified value. In the absence of obstructions or struc-
tures, the velocity computation can be allowed to start as
soon as the flow depth exceeds zero, unless field observa-
tions indicate that there should be a greater amount of
water in detention storage before the occurrence of flow.
If such is the case, the depth for incipient motion should
be measured and then be specified in the model to induce’
the calculation of the flow velocity,

The provision of the comparators allows the pro-
gram to be used for cases in which a reservoir or a pond is
present in the channel system. In this case the reservoir is
replaced by an equivalent reservoir or channel having the
same length, storage capacity, outlet section, and average
width and slope as the reservoir. The velocity compu-
tation at all sections upstream from the outlet can be
allowed- to start when the flow depth at those sections
exceeds zero. At the outlet section the velocity is kept at
zero. In other words, there will be no flow until the depth
has built up to the level of the spillway inlet. At an over-
fall spillway the flow will be kept at zero until the reser-
voir is full, and conditions similar to those derived in
Chapter V for the downstream boundary of the overland
flow, will be used at the overfall. For conduit spillways
such as chute and tunnel spillways, the flow computation
will be allowed to start when the water surface reaches the
level of the conduit inlet. The unsteady flow equations for
channe! flow can be used as long as free surface flow
prevails in the conduit. However, once pressure flow is
established, the flow depth will have to be replaced by the
instantaneous piezometric head in the unsteady flow
equations in order to compute the flow through the con-
duit. The piezometric head at the conduit entrance is the
difference between the depth of water in the reservoir and
the level of that entrance. '

Modcl] Regulation
The surface runoff model includes a number of

parameters which can be divided into two types, namely,
the function parameters and the condition parameters. -
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Function parameters

The function parameters are those watershed char-
acteristics which are constant with respect to time, such as
length, width, and slope of the planes and channels. Gen-
erally speaking, these quantities are subject to direct mea-
surement by established methods. Function parameters
vary with respect to space, but average values are usually
established for each subzone of the watershed. The equi-
valent subzone concept discussed in Chapter V is a spatial
integration technique for function parameters.

Plane characteristics

The function parameters pertaining to the plane are
the width, length, and slope of the plane. The width of
the plane is equal to the length of the segment of channel
in a subzone. Upon measuring the surface area of the
natural subzone, the length of the half-plane is obtained
by dividing the subzone area by twice the length of the
portion of channel in that subzone. This is illustrated in
Figure 5.2. The plane slope is an average of the slopes of
the land surfaces and the tributaries within a natural sub-
zone. Aerial photographs or field surveys are required for
the determination of the land slopes.

Channel characteristics

The channel dimensions and slope are also consid-
ered as function parameters. The length of the segment of
channel in each equivalent subzone is the meandering
length of the corresponding portion of the natural chan-
nel. This length, which is equal to the plane width, can be
measured directly from a topographic map. The cross-
sectional dimensions of the channel must also be meas-
ured. When the assumption is made of a rectangular chan-
nel, the width and depth for each channel reach Ax are
sufficient to define the cross-section. From aerial photo-
graphs, the width and depth can be obtained respectively
as the averages of the widths and of the depths in the
corresponding natural channel reach. If another channel
shape is assumed, a special field survey may be required
for the measurement of the channel cross-sectional dimen-
sions. For the sake of simplicity, it is desirable that each
section Ax of the natural channel be replaced by an equiv-
alent prismatic channel. The slope of a channel reach is
the weighted average of the slopes within the correspond-

ing natural channel reach. It is obtained from a topo-
graphic map or from aerial photographs of the watershed.

Condition parameters

The condition parameters are those parameters
which vary with time within a given watershed and usually
cannot be obtained by direct measurement. They are gen-
erally dependent upon surface and moisture conditions of
the watershed. Even though these quantitics are not read-

ily available or measurable for inclusion in a model, nu.
merical values are required and must be estimated for each
subzone of the watershed. Condition parameters include
the retention and infiltration rates, and the roughness co.

efficients.

Retention rate

The retention rate accounts for losses due to inter-
ception and depression storage. Its dependency on factors
such as vegetative cover, soil surface condition, and water-
shed moisture status, explains the impossibility of obtain-
ing it by direct measurement. This situation makes it
compulsory to resort to some indirect method, such as
model fitting, for the determination of the constants in-
volved in the retention rate equations. The retention rate
for a watershed is determined when the constants Resand
k, of Equation (5.4), the rainfall rate, and the watershed

moisture condition are known.

Infiltration rates

The model distinguishes an infiltration value for the
plane and another for the channel within a subzone. This
distinction is substantiated by the fact that the channel
bed material is often more permeable than that of the
land surfaces. The model also provides for different values
of the infiltration capacity rate for each subzone of a

watershed.

The determination of the rate of infiltration is ren-
dered difficult by the fact that this rate is a function of
the rate of effective rainfall, the infiltration capacity rate,
the depth of water above the ground surface, and the soil
moisture conditions. Direct measurements of infiltration
are made in situ using artificial sprinkling devices or srall
surface runoff plots. Such measurements, however, ap-
proach point measures of infiltration which may vary con-
siderably from the average, and are frequently not re pre-
sentative of the whole watershed. Furthermore, in situ
and plot measurements are not often available. Theref ore,
in most cases, it is necessary to use an indirect method for
determining the constants of the infiltration capacity rate
equation. According to Equations (5.9) and (5.15), the
constants to be determined are the maximum infiltration
capacity rate fo, the minimum infiltration capacity rateé
£, the time constant k¢, and the constant ¢ applied in the
computation of channel seepage loss.

Roughness coefficients

fferent ’

Within the analog computer program a di
e and

roughness coefficient may be used for each plan
channel section, depending upon the conditions of th e soil
surface such as irregularities and vegetative cover an d the
meanderings and irregularities of the channels. Usually,

1
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the channel bed has less vegetation cover than the sur-
rounding land surfaces, and higher roughness coefficient
values therefore generally can be expected in the case of
overland flow. Values of the roughness coefficients for the
planes and the channels can be obtained by the indirect
method of model fitting.

Procedure

The mathematical model of the surface runoff pro-r .

cess is not complete for a particular watershed unless the
condition parameters are known for that watershed. The
model must be fitted or regulated. That is, the condition
parameters must be adapted to each watershed. Model
regulation, therefore, implies the determination of a set of
values for the constants involved in the condition para-
meters such that they fit the watershed under study.

The model is regulated by the method of data ad-
justment. This method involves the fitting of the condi-
tion parameters to a set of data under a particular set of
criteria. A runoff event for which good data are available

is used to develop estimates of the condition parameters .

that fit the general model to the given watershed. It is
necessary that precipitation and runoff data be reliable, or
that their accuracy be known. Antecedent precipitation
and runoff can be used as an index to the watershed mois-
ture status. Data concerning the topography of the water-
shed are needed in order to obtain the function para-

meters.

The next procedural step is to assume numerical
values for the adjustable constants of the condition para-
meters. With those assumed values, the rainfall can be
routed over the land and through the channel system to
produce the outflow hydrograph at the outlet of the
watershed. A good agreement will seldom be obtained on
the first trial between the computed and the measured
runoff hydrographs; therefore, the values of the condition
parameters are adjusted in subsequent trials until a good
fit is achieved. The set of values of the condition para-
meters for the watershed is adopted for which a good fit is
obtained under the selected set of criteria.

Methods and criteria for goodness of fit

Obviously the computations cannot start unless
some beginning numerical values are assigned to the con-
dition parameters. The initial selection of those values is
based upon available data, about those parameters and the
processes they represent, the antecedent moisture con-
dition of the watershed, and, if available, upon previous
studies and measurements made on the watershed.
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The adjustment or fitting of the condition para-
meter values is performed through a trial and error pro-
cedure. The values assumed in the first approximation are
changed or adjusted and the computations are carried
with the modified set of condition parameter values. The
procedure is repeated until a close fit is obtained between
the computed and measured hydrographs. At the end of
each trial it is necessary to decide which condition para-
meters will be modified and the degree of change for the
subsequent trial. This decision is governed primarily by
the closeness of fit in the previous trial, the operator’s
knowledge of the runoff process, and also the experience
he has gained with the mathematical model and its re-
sponse to changes in the condition parameters. Familiarity
with the model and its response to parameter changes can
be acquired by making a sensitivity analysis prior to the
regulation phase of the study.

Taking for granted that the fit between the com-:

puted and the measured hydrographs should be close,
some measure of closeness should be used in order to
decide whether or not a particular agreement is satis-
factory. In other words, the data fitting technique re-
quires the selection of a set of criteria for goodness of fit.
These criteria depend on the accuracy of the data, the
objectives of the study, and the order of priority given to
the hydrograph characteristics. In this study, efforts were
made to match the principal characteristics of the com-
puted and measured hydrographs in the following order of
priority:

1. hydrograph peak
2. time to peak
3. volume of flow

The criteria for goodness of fit are expressed as tol-
erance limits or errors which are permitted on the princi-
pal characteristics of the watershed outflow hydrograph.

Model Verification

The numerical values of all the model parameters
are known for a given watershed once the model has been
regulated for that watershed. In the verification phase of a
study the accuracy of the fitted parameters and of the
model is checked. This is done by selecting other rainfall
events associated with good data. The regulated model is
then used to predict the watershed outflow hydrograph,
and the criteria for goodness of fit are applied to assess
the closeness of fit between the predicted and the meas-
ured outflow hydrographs.




CHAPTER VII

THE EXPERIMENTAL WATERSHED

A subbasin of the Walnut Gulch experimental
watershed was selected to test and verify the surface run-
off model developed in the preceding chapter. Walnut
Gulch is a 58-square-mile watershed located at Tombstone
in southeastern Arizona (see Figure 7.1). It is an ephem-
eral tributary of the San Pedro River which receives the
outflow from Walnut Gulch at Fairbanks, Arizona. Inten-
sive study of this basin has been undertaken by the agri-
cultural Research Service of the US. Department of Agri-

culture which has established an intensive network of

" hydrologic instrumentation on the watershed.

Geology

A layer of coarse-grained Late Pleistocene sedi-
ments, varying in depth from 0 to 100 feet, constitutes
the top strata of the valley fill of the region within which
Walnut Gulch lies. This layer is underlain by a deposit of
calcium carbonate and a layer of fine-grained early to mid-
dle Pleistocene sediments. The sediments originate mainly
from granitic rocks. The regional groundwater table is sit-
uated at a depth of approximately 400 feet beneath the
land surface.

Topography

Elevations vary from 4,200 feet above mean sea
level at the western end of the watershed to over 6,000
feet at the eastern portions of the basin. Consequently,
gradients are steep and stream channel slopes average ap-
proximately 1 percent.

Soils and Vegetation

The soils of Walnut Gulch can be grouped into six
major associations (Figure 7.2) and strongly reflect the
influence of parent rocks and the temperatures prevailing
during wet seasons. Most of the soils are either gravelly or
stony and medium-textured to bedrock. The climax vege-
tation of the area is Desert Plains Grassland. Today, much
of the country originally described as grass-covered is
predominantly brush (Figure 7.3). Black grama and curly
mesquite grasses prevail in most of the eastern portion of
the area with the brush areas dominated by whitethorn,
creosotebush, tarbush and sand paper bush.
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Instrumentation

A network of 91 recording gages is used to measure
precipitation on the watershed. Runoff is measured at the
outlet of the watershed and also at the outlets of 11 sub-
watersheds within the Walnut Gulch drainage basin.

Precipitation

Annual precipitation on Walnut Guich averages
about 14 inches. Thirty percent of the annual precipita-
tion occurs as low-intensity rain or snow during winter,
and generates no runoff over the watershed. The remain-
ing 70 percent consists of convective, runoff-producing
storms, and occurs as short-duration, high-intensity rain
during the July to September period.

Subwatershed 11

The subunit of the Walnut Guich experimental
watershed which was selected for simulation is subwater-
shed 11 (see Figure 7.4). This subbasin, with a drainage
area of 2,035 acres, is situated in the northeastern portion
of Walnut Gulch. The soil is the Hathaway-Bernardino-
Sonoita association with small areas of Camoro soil in the
alluvial swales. The vegetation is composed of black grama
and curly mesquite grasses with limited amounts of brush
primarily along the channels (Figure 7.2 and 7.3).

Drainage conditions

The channel system of subwatershed 11 comprises
three main branches as shown in Figure 7.5. The middle
channel traverses the entire length of the subwatershed
and is 4.40 miles long with an average slope of 1.98 per-
cent. The north channel with a length of about 2 miles
and an average slope of 1.98 percent, enters the middle
channel some 3,000 feet upstream from measuring flume
11. The south channel is 3.6 miles long and has an average
slope of 2.03 percent; its junction with the middle chan-
nel is located one thousand feet upstream from flume 11.
The channel bed material, made of unconsolidated sand
and gravel, comprises particles exhibiting a Jogarithmic
normal distribution with a geometric mean particles size
of 2.3 mm. Fifty-four percent of the total material lies in
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Figure 7.3, Vegetation map of the Walnut Gulch experimental watershed.
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zone is rectangular in cross-section and has a width equal
to the average width of the natural channel. Under this
assumption, the term G defined by Equation (2.26) s
equal to zero, and the flow cross-sectional area is equat to
the product of the channel width and the flow depth.

the gravel range, that is, larger than 2 mm. The channels
are dry about 99 percent of the time and have a potential
10 absorb large quantities of runoff (Renard et al. 1966).

Natural subzones
Boundary conditions

Subwatershed 11 has been divided into 9 subzones
according to the watershed treatment procedure outlined
in Chapter VI (sce Figure 7.5). The physical char-
acteristics of each subzone, measured from topographic
maps and areal photographs of the Walnut Gulch, are list-
ed in Table 7.1. The average depth of the channels is 6

feet. :
Channel flow
Subwatershed 11 receives no water from the neigh-
boring subbasins, and the conditions at the upstream end

of each channel are expressed by Equations (5.19).
Flume 11 is located at the downstream end of the

Overland flow

The upstream boundary conditions for the plane are
those given by Equations (5.12). The condition of a con-
tinuing plane, as described in Chapter VI, is assumed to
prevail at the downstream end of the plane.

Equivalent subzones

The equivalent subzone has the same drainage area

as the natural subzone. Table 7.2 shows the physical char-
acteristics of the rectangular sloping planes and of the channel network. Figure 7.6 shows the cross-section of

portion of channel within each equivalent subzone. It is the flume measuring section. The conditions at the section ?!
further assumed that the channel of the equivalent sub- are:

Table 7.1. Physical characteristics of the natural subzones.

e amm wm (e
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Channel Dimensions 4

suprne || Aree | wangen | A | AR | M

(feet) Slope
1 136.9 5,280 20 . 025 0. 040
2 75.4 2,640 25 . 021 0. 050
3 397.8 7,420 30 .022 0.038
4 189.7 1,980 20 . 024 0. 050
5 241.3 5,620 25 .018 0.051
6 252,17 7,260 20 .016 0.042
7 268.4 6,270 25 . 015 0. 045
8 73.9 3,000 20 .015 0. 050
9 399.0 13,000 30 .023 0.048




Table 7.2. Physical characteristics of the equivalent subzones.

Channel Dimensions Plane Dimensions
Subzone Area -
No. (acres) Length Width Slope Length Width Slope
(feet) (feet) (feet) (feet)

1 136.9 5,280 20 . 025 565 5,280 0.040
2 75.4 2,640 25 . 021 588 2,640 0. 050
3 397.8 7,420 30 . 022 1,167 7,420 0. 038
4 189.7 1,980 20 . 024 2,082 1, 980 0. 050
5 241.3 5,620 25 .018 940 5,620 0. 051
6 252.7 7,260 20 .016 755 7,260 0. 042
7 268.4 6,270 25 .015 932 6,270 0. 045
8 73.9 3, 000 20 .015 546 3, 000 0. 050
9 399.0 | 13,000 30 . 023 774 13, 000 0. 048

I
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Figure 7.6. Measuring section of flume 11 located at the outlet of subwatershed 1.
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Flume 11 has a slope of 3 percent at the measuring sec-
tion.

Runoff events

The runoff events selected for the purpose of this
study were those of July 20 and July 29, 1966. A meas-
ured volume of 191.4 acre feet of precipitation fell on
subwatershed |1 on July 20, 1966. The rainfall lasted one
hour, with the major portion falling on the eastern part of
the subwatershed. Table 7.3 gives the depth of rainfall for

S-minute intervals for each subzone. This rainfall event
was the first runoff-producing storm of the year on sub-
watershed 11, and, consequently, infiltration and reten-
tion losses could be expected to be relatively high.

The rainfall of July 29, 1966, occurred on a water-
shed still wet from a rainfall event of the preceding day.
On July 29 subwatershed 11 received 60.7 acre feet of
rain in 40 minutes. The storm was concentrated mainly in
the western subzones of the subwatershed. The rainfall for
5-minute intervals is given in Table 7.4 for each subzone.

Subzone 9 of subwatershed 11 contains 2 stock
ponds, and did not contribute any flow on July 20 and
July 29, according to records from the runoff- measuring
station located at its outlet. Consequently, for these
storms subzone 9 was treated as blind drainage, and ex-
cluded from hydrologic analysis in the simulation of the
tunoff,

Table 7.3. Precipitation data for event of July 20, 1966, on subwatershed 11 of the Walnut Gulch experimental

watershed.

Subzone 1
Number Time from 1600 hours {(minutes)

5 10 15 20 25 30 35 40 .45 50 55 ) 60

1 0 . 026 . 123 .Zél .306 .259 . 199 . 102 . 034 . 007 . 007 . 001

2 0 .012 . 073 .225 . 240 .264 . 193 . 105 . 047 . 009 . 009 . 003

3 0 .019 | ,081 .189 | .225 .216 . 152 112 . 047 . 154 . 109 | . 006

4 0 .013 | .059 | .193 | .198 | .232 .168 | .103 | ,050 | .0l0 | .009 |.005

5 .004 | 013 | ,045 | .136 | 191 | ,215 | ,136 | .085 | ,047 |.018 | .012 |.004

6 . 008 . 022 .065 | . 174 . 187 .204 | . 136 . 098 .049 | .o023 .014 . 005

7 .02 .012 . 081 . 170 .216 189 1 . 117 . 078 . .050 | .o018 .013 . 005

8 .03 .006 | .076 | .166 | .207 | .200 | .121 ] .072 | ,047 |.017 | .01 | .003

9 . 003 .019 . 095 .250 261 . 240 . 186 . 104 . 042 .011 .0l10 . 003

1 -
The tabulated values in the main body of the table are the precipitation depths computed
by the isohyetal method during each five minute interval,

=T it




Table 7.4. Precipitation data for event of July 29, 1966, on subwatershed 11 of the Walnut Gulch experimental
watershed.
Subzone
Number Time from 1820 hours (minutes)
5 10 15 20 25 30 35 40

1 .037 | .102 | .097 | .046 | .026 | .009 | .001 | .001
2 .015 | .053 .095 | ,073 .038 | .010 | .001 | .00l
3 . 023 . 053 .074 | .071 | .061 | ,021 | .007 | .004
4 .019 | .044 | .091 |[.088 | .050 | .013 | .003 | .000
5 .016 . 043 .119 | . 112 | .075 | .026 | .01l | .00l
6 .017 | .042 | .096 |.101 | .074 | .028 | .01 . 001
7 .034 | ,047 | .104 | .113 .090 | .023 | .01 . 001
8 .035 | .048 | ,131 | . 146 | . 108 | .027 | .013 . 000
9 .024 | .065 | .090 [.069 | .039 | .014 | .003 | .000

1The tabulated values in the main body of the table are the
precipitation depths computed by the isohyetal method for each five

minute interval.
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CHAPTER VIII
RESULTS AND DISCUSSION

The mathematical model of surface runoff develop-
ed in the previous chapters was applied to subwatershed
11 of the Walnut Gulch experimental watershed. The
model was fitted to the subbasin with the data from the
runoff event of July 20, 1966, and then verified with the
flow event of July 29, 1966. This chapter presents the
results of that application.

Flow Hydrographs

Figures 8.1 and 8.2 show the computed and meas-
ured flow hydrographs at the outlet of subwatershed 11
for the events of July 20, and July 29, 1966, respectively.
The selected criteria for goodness of fit are presented in
Table 8.1 as the percent error which is permitted on each
of the principal characteristics of the discharge hydro-
graph at the measuring flume 11. The measured and com-
puted values of these characteristics are presented in Table
8.2 for the runoff event of July 20, and in Table 8.3 for
that of July 29. Tables 8.2 and 8.3 also contain the per-
cent errors or percent deviations of the computed values
from the measured values. A comparison between these
percent errors and the tolerance limits set for the errors in
Table 8.1, indicates that, under the selected criteria, the
fit is good for the two outflow hydrographs obtained
from the mathematical model.

It will be observed from Figures 8.1 and 8.2 that the
measured outflow hydrographs exhibit a “tail” which is
not closely reproduced by the computed hydrographs.
The exact origin of this “tail” is not yet known, although
it is believed that part of it may have been caused by some
traces of interflow or subsurface flow. In any case, the
“tail” portions of the hydrographs are small and con-
tribute less than 1 percent of the total volume of flow

under the hydro- graphs.

As can be seen from Tables 8.2 and 8.3 or from

. Figures 8.1 and 8.2, the volume of runoff on July 20 was
.279 acre-feet less than that of July 29, although the vol-
ume of rainfall on subwatershed 11 for July 20 exceeded
that of July 29 by 130.7 acre-feet. Some light can be shed
on that seemingly strange situation by the two followins

considerations. First of all, the runoff event of July 20,
which was the first for 1966 on subwatershed 11, took
place when the subbasin was dry, and, as a result, the
retention and infiltration capacity rate functions (Equa-
tions (5.4) and (5.9) respectively) assumed the maximum
values at the beginning of the storm. In contrast, on July
29 the subbasin was still wet from an event on July 28;
the two runoff producing events were separated by only 7
hours. As a consequence of the wet initial condition on
July 29, the infiltration capacity rate function assumed its
minimum value throughout the event, and the actual re-
tention rate was negligible since the retention storage was
already essentially satisfied. In addition to the high loss
rate values, the spatial distribution of the storm of July 20
permitted a large opportunity time for channel seepage.
Because the rainfall was concentrated mainly on the upper
part of the subwatershed, as depicted by Table 7.3, most
of the outflowing water originated from the upper sub-
zones. The routing process involved in the solution of the
surface runoff reveals that the waters which contribute to
the major part of the runoff, had to flow through almost
the entire length of the main channels. This situation re-
sulted in a long lag time, as evidenced by Figure 8.1,and a
large amount of water was lost to channel infiltration and
seepage. Only July 29, the storm was centered in the
lower part of the basin, that is, in the subzones near the
outlet, It was disclosed by the model that the flow from
the upper subzones was negligible, and the lower subzones
contributed the entire runoff. Therefore, in this instance
the outflowing water had to travel a short distance, and
only a small opportunity time for channel seepage existed.
As a result, the time lag was relatively shorter, as illus-
trated in Figure 8.2, and the channel seepage losses were
much less than those of July 20.

The model also yields the flow hydrographs at each
section of the planes and of the channels. Flow hydro-
graphs recorded at successive sections are presented in
Figure 8.3 for the plane and in Figure 8.4 for the channel
of subzone 2. Because every point on the plane of a par-
ticular subzone receives the same rainfall rate and shares
the same loss functions, the flow starts at the same time at
all the plane sections, but the time lag and time to peak
incrcase with increasing distance from the upstream end.
The picture can be different for the channel which re-

51.




40}

30T

Q in cfs

10

- — — — measured

computed

_—— .-
A N e

80 90 100 110 120 130 140 150

Time in Minutes

Figure 8.1. Outflow from subwatershed 11 for the event of July 20, 1966.

Table 82. Principal outflow hydrograph characteristics
and percent error for the event of Jjuly 20,

1966.
Table 8.1. Selected criteria for goodness of fit.
Hydro-
graph .
Charac- Mgasured Computed |Discrepancy| % error
teristics
Principal outflow hydro- Maximum % error
Peak flow 22.20 22.24 .04 L 17%
graph characteristics permitted rate
{cfs)
Time to 80.00 81.66 1.66 2.1 %
peak
Peak flow rate 5%, {minutes)
Time to peak 5%, Total vol- .573 . 590 .019 3.05%
ume of
Total volume of flow 5% flow
{acre-feet)

52



pe s
~ar

TR

o Mt e e T Ve A e DR R R,

PRI R PR

e

T T = measured
40 + ~— computed
30 <
1]
S
U
S
a 20 -
10 -
. N it T ot = ( \
0] 1C 20 30 40 50 60 70 80 90 100 110 120

Time in Minutes

Figure 8.2. Outflow from subwatershed 11 for the event of July 29, 1966.

Table 8.3. Principal hydrograph characteristics and percent
error for the event of July 29, 1966.

Hydro-
graph
Charac-
teristics

Measured | Computed [Discrepancy] % error

Peak flow 32.05 32.40 .35 1.1%
rate
(cls)

Time to 35.00 36.50 1.5 4.3%
peak
{minutes)

Total vol- . 852 . 88 . 028 3.5%

ume of

flow '
(acre-feet) J
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ceives at its upstream end section an additional input from
the above subzones. However, since the channel of sub-
zone 2 receives no water from adjacent subzones, the
channel flow hydrographs shown in Figure 8.4 exhibit the
same characteristics as those of the plane. The hydro-
graphs of Figure 8.4 were obtained for channel seepage
capacity rate values much less than those adopted for the
subwatershed, and are presented here only for illustrative
purposes. Actually there was not flow from subzone 2 as
the water was lost to channel seepage.

Important flow characteristics which can be obtain-
ed from the model are the stage- and velocity hydrographs
at each channel and plane section, Typical stage- and
velocity-hydrographs at a channel section are shown in
Figure 8.5,
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Condition Parameters

Because of the uniformity of such factors as the
vegetal cover, the soil type, and the channel bed material
within subwatershed 11, one set of condition parameters
was assumed to apply to the overland flow, and another
set to the channel flow. The maximum and minimum in-
filtration capacity rates selected for the channels were
larger than those of the planes because of the loose and
coarse channel bed material. However, a higher roughness
coefficient was assumed for the planes due to the presence
of the grass and brush on the land. The fitted values of the
condition parameters are listed in Tables 8.4 and 8.5 re-
spectively for the planes and channels of subwatershed 11.

Table 8.4. Fitted values for the constants involved in the
condition parameters for the land surfaces of
subwatershed 11.

Constants Fitted values
R 0.15 in
cs
k 1.0
r
f 0.18 in/hr
m
f 1.8 in/hr
O
k; 0.60
K 0.093 EZC—
ft

Table 8.5. Fitted values for the constants involved in the
condition parameters for the channels of sub-
watershed 11.

Constants Fitted values
f 1.8 in/hr
m
f 4,2 in/hr
o
kf . 04

-1
c .10 sec
K .03 =<
2
ft

8§88

They were obtained by fitting the mathematical model 10
the runoff data of July 20, and, therefore, they depend on
the data used and the selected criteria for goodness of fit.
The evaluation of these parameters would be more ac-
curate if flow data at the outlet of each subzone, and
additional information about the overland flow were avail-
able. Nevertheless, the fitted values presented in Tables
8.4 and 8.5 are considered reasonably accurate, since they
were used in the model to predict the runoff of July 29
within errors which did not violate the criteria for good-
ness of fit.

Check on Conservation of Mass Principle

Besides the hydrographs, the analog model provides
plots of the effective precipitation, the retention and infil-
tration rates as illustrated for the plane-of subzone 2 in
Figure 8.6. From those graphs, the actual amount of
water lost to infiltration and to retention storage, as well
as the volumes of water input and water output can be
computed. By making a water budget for the subzones, it
is thus possible to check how closely the principle of con-
servation of mass was satisfied. The results of this check
are presented in Table 8.6 for the overland flow of sub-
zone 2. Since there is no reservoir or pond on subzone 2,
at the end of the flow event the total volume of water
input, or rainfall, must be equal to the volume of runoff
plus the volume lost to retention and infiltration. Of the
7.44 acre-feet of rain introduced as input in the computer
program, an amount of 7.43 acre-feet was accounted for
in the computer outputs, resulting in an error of only 0.18
percent. A similar check was carried for the overland flow
of subzone 1 and the results are also reported in Table
8.6. In both cases the percent error is small.

Distribution of the Watershed Losses

From the histograms of rainfall input and the out-
put hydrographs of overland the channel flows, the vol-
umes of losses on the land surface on one hand and in the
channel network on the other can be computed. Table 8.7
gives the respective amounts of water lost to infiltration
and retention storage on the land surface and to seepage
in the channel system of subwatershed 11 for the events
on July 20 and July 29, 1966. Table 8.7 also shows that
for those storms subzone 9 was treated as blind drainage
for the reasons given in Chapter VII. It will be observed
from Table 8.7 that the losses from the storm on July 20
were much larger than those on July 29 due to the differ-
ent moisture conditions which prevailed on subwatershed
11 at the onset of each storm and to the different rainfall
distribution as explained earlier in this chapter.

Solution Speed

The computer solution time was reduced by choos-
ing a time scale factor h = 1/300, that is, one machine
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Figure 8.6. Input and output data for the plane of subzone 2 used in the check on the conservation of mass principle,
July 20, 1966.

Table 8.6. Check on conservation of mass principle for subzones 1 and 2 for the event of July 20, 1966.

e i L e

Volume of rainfall Volumes computed from program outputs

; Subzone |input to program Retention Infiltration Outflow Total Error
i ‘ Number {acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet)| (acre-feet)) % error
¥

i

i 1 13. 00 1,92 5.99 5.20 13,1 0.11 | o0.85

, 2 7.44 1. 04 2.19 4,20 7.43 0.01 0.13

i
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Table 8.7. Distribution of watershed losses for the runoff events of July 20, and July 29, 1966, as computed from the
model inputs and outputs.

Losses 'to infiltration and reten-

tion storage on land surface

Losses to channel seepage in

channel system

Losses to blind drain-

age (all the rainfall

on subzone 9)

Date of Volume per Volume per mile

runoff Total volume sq. mi. of land Total volume of channel Total volume

: 2

event (acre-feet) (acre-feet/mi ) (acre-feet) (acre-feet/mile) (acre-feet)
July 20, '

1966 114,18 42, 80 36. 14 4,84 40.47
July 29,

1966 37.06 13.90 . 86 1,32 12,9

second corresponded to 300 seconds of the physical sys-
tem. Although the analog computer yielded the flow
hydrographs at the downstream ends of the planes in only
a few seconds, hardware limitations prevented the outlet
of the watershed from being reached in a single program-
ming operation. It was, therefore, necessary to record the
simulated hydrographs at selected points, for example at
the downstream end sections of the planes and at the
outlets of the subzones. The computer was then program-
med for the adjacent downstream parts of the model and
the recorded hydrographs introduced as portions of the
input quantities. The process of transforming the recorded
hydrographs into an input form suitable to the analog
computer is a tedious task which accounts for most of the
delay experienced in solving the model. In addition, fur-

ther delay was introduced because it was necessary to -

manually reset many of the potentiometers for each run.

The programming shortcomings discussed in the pre-
vious paragraph could be overcome by the use of a hybrid
computer in which it is possible to set the potentiometers
automatically, store the output hydrographs, and call for
them when needed. With a sufficiently large storage capa-
city the hybrid computer would be capable of auomatic
iterative processes and data fitting procedures according
to a selected set of criteria for goodness of fit.

Models Based on Simplified
Unsteady Flow Equations

An attempt was made to assess the validity of some
simplifications usually made in the momentum equation.
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The simplifications considered here involved neglecting
the convective acceleration l/gBVzlax and the pressure
termd y/ox.

In the case of the planes, flow depths and velocities
were so small that the inertial term, 1/g 3V2/ ax, and the
gradient of depth, dy/px, were insignificant and had no
effect on the overland flow hydrographs. The slopes of
the channels of subwatershed 11 are very steep, as evi-
denced in Table 7.2. As a result, the slope and roughness
terms were predominant to the extent that the convective
acceleration was completely insignificant, and the gradient
of depth had a negligible effect on the channel flow
hydrograph. For the flow range involved in the two runoff
events modeled here, the refults did not change when the
terms dy/ox and 1/g 3V were dropped from the
momentum equation.

Sensitivity Analysis

Subzone 2 of subwatershed 11 was selected for the
study of the effect of condition parameter changes on the
shape of the overland and channel flow hydrographs. The
procedure used in this analysis consists in varying one
parameter while keeping the others constant,

Overland flow hydrograph

The responses of the overland flow model for sub-
zone 2 to changes in the plane condtions parameters are
shown in Figures 8.7 to 8.12. Plots illustrating the varia-
tion of the flow hydrograph with changes in R and
k¢ are given in Figures 8.7 and 8.8 respectively. For the
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same retention storage capacity, and amount of water lost
to retention storage increases with decreasing k, values.
The effect of the plane roughness coefficient K on the
flow hydrograph is presented in Figure 8 9. Variation of K
affects particularly the peak and the duration of flow, but
does not change the time of rise. An increase in the K
value results in a decrease in the flow volume because the
flow velocity is reduced and infiltration opportunity time
is thereby increased. Figure 8.10 and 8.11 indicate that,
for k¢ = 0.60, all the characteristics of the hydrograph are
significantly affected by changes in fr, , while they experi-
ence little alteration when the value f is modified. How-
ever, this is not the case for low values of k¢, and whether
or not variation of f,affects the hydrograph more than
variation of f,, depends on the value of k. Figure 8.12
shows an increased amount of infiltration loss with de-
creasing values of k;, and, therefore, suggests that the
maximum infiltration capacity rate f, plays an important
role when the time constant kg is small, while the mini-
mum infiltration capacity rate f;, is predominant for large
values of k.

Values of R
cs

in inches
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r
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Time in Minutes

20 30 40 50

Figure 8.7. Overland flow hydrograph for the subzone 2
as affected by changes in the retention storage

capacity, R °, July 20, 1966.
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Channel flow hydrograph

The channel flow hydrograph can be affected by
- changes in all the condition parameters within the model.
For the channel of subzone 2, the responses of the hydro-

graph to changes in the plane condition parameters are

illustrated in Figures 8.13 to 8.18, whereas F igure 8.19 to
8.23 present the responses when the channel condition
parameters are modified. The effects of the retention
terms R, and k, are given in Figures 8.13 and 8.14 re-
spectively. The time at which the flow ceases is almost
invariant with changes in R¢s for overland flow (see Fig-
ure 8.7), while for channel flow it varies significantly
when R is changed (see Figure 8.13). The manner in
- Which the channel flow model responds to changes in
plane and channel roughness coefficients respectively is
indicated in Figures 8.15 and 8.23. The chief difference
between the effects of those two coefficients on the
hydrograph is that for the range of values tested, the chan-
nel K has no effect on the rise time of the hydrograph,
whereas, the plane K affects it significantly. The influence
of the constant applied to channel seepage on the hydro-
graph shape is seen in Figure 8.22. Changes in c alter the
volume, peak, and duration of flow, but leave the hydro-
graph rise time unchanged. Figures 8.16 to 8.21 empha-
size again the role of k¢ in determining the relative weight
carried by f;,, and f, in the infiltration capacity function
and their influence on the flow hydrograph. The plots of
Figures 8.16 and 8.17 were obtained for a plane kg value
of 0.60, while those of figures 8.19 and 8.20 had a chan-
nel ke value of 0.10. These plots show that the hydro-
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Figure 8.13. Channel flow hydrograph for subzone 2 as
affected by changes in the retention storage
capacity, R, July 20, 1966.

graph was more sensitive to changes in the plane fin than

to Fhfanges in the channel f,, and also more sensitive to
variation of channel f ; than to variation of plane fo. The
relative magnitude of the difference between foandf,
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Figure 8.14. Channel flow hydrograph for subzone 2 as

affected by changes in the time constant of
the retention capacity rate function, k,,
July 20, 1966.
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affected by changes in the plane roughness
coefficient, K, July 20, 1966.



establishes the sensitivity of the model to changes in k-
the larger the difference the more sensitive is the hydro-
graph to variation in k. This is illustrated in Figures 8.18
and 8.21 which show that the hydrograph was more sensi-
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Figure 8.17. Channel flow hydrograph for subzone 2 as
affected by changes in the plane maximum
infiltration capacity rate, f , July 20, 1966.
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affected by changes in the channel minimum
infiltration capacity rate, £, July 20, 1966.




R R A A e

A L

&L

e e LA

ey

- e e
¢ i, B i L AL PO T STtn rd—m e e - —

40

¢+

Q in cfs

0

channel f = 1.8 in./hr
m

channel ls’ =010

Values of channel
lo inin./hr.

T N\

o —— .
20 0 40 50 60 10 80

Time fn Minutes

2 N
90 100

Figure 8.20. Channel flow hydrograph for subzone 2 as

affected by changes in

the channel

maximum infiltration capacity rate, f,, July

20, 1966.

40+

0+ Valyes of channel k!
bt
k]
ot (o s 3.0 in. /hr.
o 1.00 £ = 1.8in ihr
¢ 20} n ° : N

16 4

x . : N 1 : .
1) to 20 30 40 30 60 lo 80 90 106

Tine fn Mioutes

Figure 8.21. Channel flow hydrograph for subzone 2 as
affected by changes in the channel infiltra-
tion time constant, k¢, July 20, 1966.

62

Q in cfs

s T
0 4
o
M
o
L]
020 L ¢ =0
€= 3.33x10""1
€ = 6.66x 10"
€ = 1.16x10"3
c =2 2 xIO-]
10 € s 3.33x10°3
A A L 3. n e r
0 [CERED) 3 & s0 60 20 8 100

40

30

10 +

Tice in Minutos

July 20, 1966.

2
channel K in L:‘

°

N
10

i N A N "
0 30 40 50 60 10 80
Tice in Minutes

coefficient, K, July 20, 1966.

90

1
100

Figure 8.22. Channel flow hydrograph for subzone 2 as
; affected by changes in the constant applied
to the computation of channel seepage, c,

Figure 8.23. Channel flow hydrograph for subzone 2 as
affected by changes in the channel roughness




CHAPTER IX
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The numerical solution of the unsteady flow equa-
tions, together with the presentation and discussion of
results from the mathematical model of surface runoff
suggest the following conclusions:

1. The numerical solution of the full unsteady
flow equations is feasible on the analog com-
puter.

2. The perturbation method presented for the
stability study of the differential-difference
systems is adequate since the stability condi-
tions derived from its application agree with
the restrictions generally set on flow compu-
tations according to the flow regime. In addi-
tion, no instabilities appeared in the analog
computer solution of the implicit differential-
difference system as predicted by the pertur-
bation method.

3. The solution of the implicit differential-
difference system was found to" be always
stable, and there was no restriction on the size
of the channel section, Ax, which can be used.

4.  In the application of the mathematical model,
space derivatives in the momentum equation
were negligible. Thus, truncation errors from
this. equation were not significant. Further-
more, the small error encountered in the
application of the conservation of mass princi-
ple tends to indicate that the machine errors
do not make the analog solution prohibitive.

5.  Because the pressure-distribution coefficient,
the energy coefficient, and the momentum
applied only to the negligible space derivatives
in the momentum equation, the assumption
of a value of unity for these coefficients did
not introduce serious errors.

6.  For the range of flow and slopes considered in
the application of the mathematical model,
neglecting the local acceleration and the gradi-
ent of depth does not change the results.

7. The consideration of both the overland and
channel flow in the surface runoff model
allows the computation of the volume of
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water loss to infiltration and retention storage
on the land surfaces, and the determination of
the channel seepage losses.

8.  The subdivision of the drainage basin into sub-
zones helps in reproducing the spatial distribu-
tion of the precipitation and of the model
parameters. Subdivision also provides addi-
tional opportunity for improved fitting of the
model to the watershed if measured flow
hydrographs are available at the outlet of the

subzones.
9. The runoff hydrograph predicted from the

regulated model shows satisfactory agreement
with the measured hydrograph under the
selected set of criteria for goodness of fit.

10. "The mathematical model of the surface runoff
is flexible, and can be adapted to different
flow conditions found on a watershed. It also
presents the advantage of yielding directly
such hydrograph characteristics as the time to
peak and the rise time without resorting to
empirical formulas for the time delay.

I1.  The results of the sensitivity analysis, that is,
the responses of the hydrograph to changes in
parameters, agree with what might be ex-
pected from field observations.

It is believed that the overall objective of the study
which was to improve analog computer models of surface
runoff with particular emphasis on the mode] developed
by Riley (Riley, 1967, Riley et al. 1967) has been
achieved. A brief comparison of the main features of the
study with those of Riley’s model will permit to assess-
ment of improvement achieved by the study.

The chief difference between the surface runoff
model described here and that developed by Riley lies in
the mathematical expressions on which the models are
based. In Riley’s model the space derivatives were drop-
ped from the continuity and momentum equations. As a
result, Riley’s model could not follow the flowing water
en route to the basin outlet, and did not account for the
time delay of the outflow hydrograph. Therefore, Riley
found it necessary to introduce a mechanical time delay in
order to reproduce such hydrograph characteristics as the




time to peak and the rise time. In the model developed
here, the presence of the space variable in the mathemati-
cal equations of flow allows the model to route the flow
over the land surface and in the channel system. This flow
routing accounted for the time delay observed in the out-
flow hydrograph (see Figure 8.1 and 8.2), and the model
was sufficient to properly simulate the hydrograph char-
acteristics. In addition, Riley considered the watershed as
one unit with uniform input and physical characteristics,
whereas the model described herein subzones the water-
shed to account for the spatial distribution of the rainfall
and of the watershed parameters.

Suggestions for Further Research

Several suggestions are given below for further im-
provement and as extensions of this study.

1.

The possibility of using the capability of the
hybrid computer to handle automatic iterative
processes and data adjustment procedures in
view of obtaining the watershed outflow
hydrograph in a single programming operation
is worth investigating. It is believed that the
computing time will be reduced by solving the
differential-difference equations on a hybrid
computer,

Studies should be devoted to the numerical
evaluation of the errors involved in the com-
puter solution of the unsteady flow equations.
This study may also aim at substantiating or
refuting the speculation that computing errors
make analog computer solutions of partial
differential equations prohibitive.
Investigations should be extended to the
“tail” exhibited by the measured outflow
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10.

hydrographs.

It may be of interest to apply the model to a
much larger range of flows, and to several
watersheds displaying a wide range of land
and channel slopes. This study may be used to
determine the conditions under which certain
terms in the momentum equation can be neg-
lected.

It would also be useful to apply this study to
the determination of the relations between
soil moisture and the capacity rates of infiltra-
tion and retention. A significant improvement

-would be achieved by the addition of such

relations to the present model.

Attempts should be made to combine the
model developed here with mathematical’
expressions describing the scouring of the
channel bed and the transport of the sediment
material in terms of the flow depth and velo-
city. By solving the unsteady flow equations
and the sediment equations simultaneously,
the runoff as well as the sediment load could
be obtained.

It would be interesting to extend the analog
computer solution of the unsteady flow equa-
tions to water hammer problems in conduits.
The consequences of neglecting lateral inflow
and outflow in the momentum equation
should be investigated.

It would be useful to assess the effect of the
size of the channel section, Ax,on the analog
solution of the differential-difference system.
Studies should aim at developing improved
expressions for the slope of the energy line in
the case of unsteady flow and natural chan-

nels.
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