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ABSTRACT

Analog Computer Solution of the Unsteady

Flow Equations and Its Use in Modeling

The Surface Runoff Process

The flow of water on a watershed is usually unsteady and spatially varied, but can be

adequately portrayed by the equations of momentum and continuity, commonly referred to as the

unsteady flow equations. Because these equations are quasi-linear, hyperbolic, partial differential

equations, they are not easily amenable to solution. Analog computer models of surface runoff

generally have been based on simplified forms of these equations. As an improvement of those

models, an analog computer solution is presented here for the unsteady flow equations. The

solution involves the conversion of the partial differential equations into a differential-difference

system, and a consideration of the stability of the difference approach was performed.

The analog computer solution is then used to develop a model of surface runoff generated

from rainfall on a watershed. Spatial distribution of the watershed parameters is accounted for by

dividing the drainage basin into a number of subzones according to its physiography and the

rainfall input was made to each subzone. Both the overland and channel flow components are

considered in the surface runoff process. Preliminary testing and verification of the model have

been made by simulating two runoff events on a subwatershed of the Walnut Gulch experimental

watershed near Tombstone, Arizona.

Amisial, Roger A.; Riley, J. Paul; Renard, Kenneth G.; Israelsen, Eugene K. ANALOG COMPUTER

SOLUTION OF THE UNSTEADY FLOW EQUATIONS AND ITS USE IN MODELING THE
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CHAPTER I

INTRODUCTION

The determination of the response of a drainage

basin to water input is the core of many hydrologic prob
lems. Some of these problems are: forecast of flood peaks

in rivers, protection against flood damage, design of
hydraulic structures, determination of the downstream

effects of proposed structures, and development of addi
tional water supplies for a growing population. Solutions

to these problems require reliable procedures to deter

mine, at some point on the watershed, the flows resulting

from known or given distributions of water input. Such

flows become quite complex when they are the response

of the watershed to the history of precipitation. Any

conventional procedure for the computation of flow in

open channels is beset with many difficulties. The meteor

ic water is depleted by retention on trees and in surface

depressions, evaporation, and seepage into the ground,

while unsteady spatially varied flow prevails on the land

surface and in the channel system.

Previous Work

The basic analytical approach to the overland and

channel flow phenomena was provided by de Saint-

Venant (1871) who derived the equations of continuity

and momentum for unsteady, gradually-varied flow. These

equations, which adequately describe the surface flow

over a drainage basin, are nonlinear partial differential

equations of the hyperbolic type. They are commonly
referred to as the Saint-Venant equations, the unsteady
flow equations, or the shallow water equations, and their

integration by a direct method has been obtained for only

simplified cases.

Massau (1889) transformed the Saint-Venant equa

tions into a set of equivalent characteristic equations and

presented a graphical method, for their integration. His

method was simplified and adapted to practical purposes

by Craya (1946) who made the assumption of straight-line

characteristics to solve the unsteady flow equations for

problems involving flow resistance in sloping channels

with changing cross-section. Nosek et al. (1947) used a

modified Craya method to route the wave which resulted

from the failure of the Saint Francis Dam near Los
Angeles, California. They obtained good agreement with

the recorded flood measurements.

Thomas (1937) was the first to outline finite-

difference methods for the Saint-Venant equations in rela

tion to the study of flood movement in rivers. However,

such methods were of little practical use at the time of

their development because of the extensive manual com

putations involved. Since then, computational difficulties

have been considerably reduced by the concurrent de

velopment of electronic computers and improved numeri

cal analysis techniques. Stoker (1953) formulated an

explicit finite-difference method for the shallow water

equations. Isaacson et al. (1954) solved on a UNIVAC

digital computer a mathematical model of the Ohio River

basin by making use of the numerical method developed

by Stoker. The same model was successfully applied for

flood prediction on the Ohio and Mississippi Rivers. After

the pioneering work of Stoker and his co-workers, many

mathematical models of channel flow based on the Saint-

Venant equations have been solved by finite difference

methods on digital computers. Amien (1966), Daubert et

al. (1967), Preissman et al. (1967), Thirriot et al. (1967),

Fletcher et al. (1967), and Baltzer et al. (1968), have used

several difference methods for the solution of the Saint-

Venant equations, and have successfully applied them to

route flow through river networks and irregular channels.

Keulegan (1945) seems to have been the first to use

the Saint-Venant equations in an analysis of overland

flow. Iwagaki (1951) used those equations to compute

runoff on road surfaces. Overland flow models based on

the unsteady flow equations were developed at Stanford

University. A well-known example of the Stanford studies

is the runoff model developed by Morgali et al. (1965) in

which a difference scheme somewhat similar to the one

presented by Stoker was utilized. These investigators

found good agreement between the computed and the

measured hydrographs. Woolhiser et al. (1967) made a

study of the rising hydrograph for overland flow based on

the solution by finite-difference integration of the non-

dimensional characteristic equations utilizing the grid of

characteristics. They found that no unique dimensionless

rising hydrograph exists for overland flow.

Formulation of finite-difference solutions involves

consideration of the stability of the various methods.

Ritchmyer (1962) made a survey of several difference

:
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schemes applicable to unsteady flow in general, and de

veloped the conditions under which each scheme is stable.

Liggett et al. (1967) made an empirical examination of

the stability of some of the difference methods used in

the numerical solution of the shallow water equations.

They found that a finite-difference scheme based on the

method of characteristics was stable but that explicit

methods were not satisfactory except for some special

cases.

Because of mathematical difficulties involved in the

solution of the Saint-Venant equal ions, a number of

mathematical models of unsteady flow have been based

on simplified forms of those equations. Deymie (1939)

linearized the equations and solved Ihe resulting simplified

forms by the Riemann-Hadamard method. Lighthili ct al.
(1955) presented a solution by Laplace Transform for I he

Deymie linearized equations, and also developed the kine

matic wave theory based on the continuity equal ion and a

simplified form of the dynamic equation of unsteady

flow. Henderson et al. (1964) and Wood ing (1965. 1966)

made use of the kinematic wave theory in (he solution of

hydrologic problems. Brakensiek (1967) replaced the

natural watershed by an equivalent sloping plane and

applied the simple kinematic flow equations to mule (he

rainfall excess over the equivalent plane. He found Ilic

computation system to be feasible for predict ing hydro-

graphs. Ishihara et al. (1955), Harder el al. (I960), and

Shen (1965) developed special electronic analog facilities

to solve runoff models based on simplified unsteady flow

equations. Riley (1967) introduced further simplifications

by using the continuity equation in the form of a storage

equation, and a simplified momentum equal ion. His

model was solved on the general-purpose electronic analog

computer, and the hydrographs obtained from the model

showed encouraging agreement with measured hydro-

graphs.

In the past, mathematical models of surface runoff

based on the unsimplified shallow water equations have

been solved exclusively on digital computers, while Ihe

analog computer has been restricted to models based on

simplified forms of those equations. However, there is

now growing recognition that the unsimplified equations

yield improved results, and that Ihe analog computer pre

sents some advantages in the simulation of physical

systems governed by nonlinear partial differential equa

tions. There is. therefore, a specific need to investigate

techniques for solving on the analog computer surface

runoff models based on the unsimplified unsteady flow

equations.

In the interest of simplicity, most of the above men

tioned mathematical models of surface runoff have neglec

ted spatial variation of hydrologic elements such as rain

fall, slope, channel size, soil, and vegetation within the

watershed. Also, the surface runoff process is often

assumed to take place either on the land surfaces or in the

channel system, overlooking the fact that both overland

and channel flows occur oh the watershed. Further, the

equations of unsteady flow are usually adapted to route

the excess rainfall over impervious surfaces, although it is

well known that infiltration continues as long as water is

available in detention storage. There is a definite need for

improved mathematical models of surface runoff which

adequately account for both time and space variation in

the physical characteristics within the watershed, and the

occurrence of both overland and channel flows, consid

ering that infiltration does not necessarily cease concur

rently with rainfall.

Objectives

The overall objective of the study was to investigate

Ihe possibility of improving analog computer models of

surface runoff from rainfall over a watershed, with partic

ular emphasis on the model developed by Riley (Riley,

1967. Riley et al., 1967). The specific objectives are as

follows:

1. To develop appropriate expressions for the

actual infiltration over the land surfaces and

in the stream channels.

2. To develop the unsteady flow equations appli

cable to the movement of flow generated

from excess rainfall over a watershed, and to

transform them into a differential-difference

system of equations for solution on a general-

purpose electronic analog computer.

3. To adapt or develop a method to study the

stability of the differential-difference system

of equations.

4. To use the analog solution of the equations of

flow in a program to route the rainfall excess

over the land surfaces and through the chan

nel network.

5. To test and verify the surface runoff model on

a natural watershed.

6. . To study the effect of neglecting certain terms

of the unsteady flow equations on the flow

hydrographs.

I1'1
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CHAPTER II

DERIVATION OF THE UNSTEADY FLOW EQUATIONS

To derive the equations which govern unsteady

flow, use will be made of the conservation of mass, mo

mentum, and energy principles (Watters, 1967).

Assumptions

In deriving the basic equations of unsteady flow the

following assumptions are made:
1. The fluid is incompressible.

2. The acceleration is in the x-direction.

3. The curvature of the water is small, so that

the y-component of acceleration of the water

particles has a negligible effect on the pres

sure. Consequently, the pressure distribution

is hydrostatic and there is no vertical velocity

component. Also the pressure-distribution

coefficient is equal to unity.

4. The shear stress, to, is uniform over the peri

meter of the channel for the infinitesimal dis

tance dx.

5. Lateral inflow and outflow rates are uniform

with respect to a particular channel element.

6. The momentum influx of the lateral inflow

and the momentum efflux of the lateral out

flow are ignored.

7. The angle of inclination of the bed with re

spect to the horizontal surface, 6, is so small

that it is considered as:

sin 8 ~S0 = slope of the bed

and

cos 6 = 1

8. The effects of resistance to flow in unsteady

flow are the same as in steady flow.

9. The energy and momentum coefficients are

assumed to be equal to unity.

Continuity Equation

The continuity equation will be derived by applying

the principle of conservation of mass in an infinitesimal

space between two channel sections as illustrated by

Figure 2.1. With reference to Figure 2.1, the quantity of

fluid entering the element per unit time, dt, is given by

the expression:

dt + I dx dt

Similarly, the quantity of fluid leaving the element

per unit time, dt, is given by:

dxl dt + O dx dt

The net amount of fluid leaving the element per

unit time, dt, is, therefore:

dxdt

According to the principle of conservation of mass,

the net outflow is equal to the decrease in storage during

the time dt. Therefore

(£♦-4dx dt s -dA dx

or

(2.1)

Momentum Equation

According to Newton's second law, the rate of

change of momentum of the fluid within a control volume

must equal the external forces maintaining the control

volume in the position at which it is analyzed. This state

ment, when expressed as a vector equation, reads as

follows:



\\\\
I = lateral inflow rate

surface

at time t + dt

initial water

surface at

time t

t

O = lateral outflow rate

Figure 2.1. Definition sketch for the derivation of the continuity equation.

^external

In the x-direction the external forces are

Pressure forces |

The net pressure force in the x-direction on the con- j
trol volume shown in Figure 2.2a is

F = F + F
P Pi P2

(2.4)

in which
F represents the pressure forces

FP represents the gravity forces
FE represents the resistance forces

Therefore, Equation (2.2) takes the followmg form m the

x-direction:

f + r * f
P 8

= -S.L vl
r Dt| |

(2.3)

in which . ,
Fp represents the net force between sections l

and 2

P" the'walls or sides of the channel Fpl is o btain-
ed by the hydrostatic law of pressure distrib

utions:



n..w profile >»oWinR
oi volume.

The pressure head correction, c, is given by

in which
r is the radius of curvature

V is the average velocity of the flow

y is the flow depth

The pressure-distribution coefficient 6' is greater

than j q for concave flow, less than 1.0 for convex flow,

and equal to 1.0 for parallel flow. By definition:

M^ 2^ _gr- r- ^

h & y(x,t),b(x^), and z are defined as shown in Figure 22b

---J--d» y(x.t) Therefore:

III .,^,
b. Cro.a-section of flow shoeing centroid and defining

variables.

Figure 2.2. Definition sketches for the derivation of the ¥ -., . ,1
net pressure force between two channel sec- or applying Leibnitz s rule.

tions.

or

or

in wliicli
hc is the distance of the centroid of the cross-

sectional area A from the water surface

6' is the pressure-distribution coefficient which
corrects for the curvature effect of the stream

lines of the flow

The pressure-distribution coefficient is generally ex-

pressed by

Equation (2.7) can be written as

*

fjhe*i -/(/•«>£-.♦ a ,-J ...(2.8)

, According t0 Lejbnitz-s rule, if F(t) = ,.„„ * (x.0Jx where
a and b are differential functions of t and where *(x,t) and
a»(x,t) are continuous in x and t, then

aat

i c dA if



since

Equations (2.5) and (2.8) yield:

F =C

Pi

In the more general case of a non-prismatic channel
(diverging or converging channel), there is the additional
pressure force FP2 that the fluid exerts on the s.des. This
force will be evaluated in Figure 2.3.

Consider an elemental area, ds dl, on the side wall of
the channel. The differential force on that area is p dl ds.
From Figure 2.3b it can be seen that the horizontal com
ponent of that force is p dl ds cos 6, and its x-component

is p dl ds cos 6 sin a (see Figure 2.3a). Thus:

dF = p dl da co. P ol» a
P2

(2.10)

From Figure 2.3a:

From Figure 2.3b:

Therefore:

da sin a = - db

dl ens 0 = di

dF :-pds Jb

P2 2

a. Plan view of channel.

I

b. Channel cross-section.

Figure 2.3. Simplified representation of the force exerted
on the fluid by the walls or sides of the chan

nel.

or

dF 'rpJis- d*
p. Z <>:;

According to the hydrostatic law of pressure distribution:

P = &'7(y-O

Thus, for a constant length of channel dr. and for both

sides

F

When Equations (2.4), (2.9), and (2. U ) r re combined, She
pressure forces are obtained us

According to assumption 3 given at the beginning of thais
chapter, the pressure-distribution coefficient, &, is equal

to unity. Therefore:

(2.12)

/ iy'ij;d: • • -(2.11) of fluid is:

Gravity forces

From Figure 2.1 the weight of the elemental vuiu me

W -. .A (2.13)



This weight gives rise to the gravity force in the

x-direction:

F c-^Adx oln8

or

dx

or

dx o g dx gA dx

F = YA dx S (2.14)
Combining Equation (2.18a) with (2.15)

Resistance forces

In the category of resistance forces are grouped

those forces which oppose the movement of flow and

induce losses of energy. These forces include: a) frictional

forces due to the liquid viscosity and the channel rough

ness; b) resistance forces which arise from the irregulari

ties in channel bottom and cross-sections, the meandering

and nonlinear alignment of the channels, and the presence

of obstructions such as vegetation and large boulders.

In view of assumption 8 given at the beginning of

this chapter, the resistance forces will be calculated from

the equations of motion and energy for steady flow.

For steady flow me equations of continuity and

motion can be written in the form:

° v + y zfl =1-0 (2.15)

- V K (2-lSb)

The total energy in foot-pounds per pound of water

in any streamline passing through a channel section can be

expressed as the total head in feet of water, which is the

sum of the elevation above a chosen datum, the pressure

head, and the velocity head. According to the principle of

conservation of energy, the total energy head at an up

stream section should be equal to the total energy head at

a downstream section plus the energy head lost between

the two sections.

With reference to Figure 2.4, y and V designate re

spectively the flow depth and velocity at section 0 mid

way between sections 1 and 2. Values at sections 1 and 2

are obtained from values at section 0 by Taylor series

expansion.

By the principle of conservation of energy the fol

lowing expression can be written between sections 1 and

2:

(2.16a)

Since Equations (2.12) and (2.14) hold for steady as

well as for unsteady flow, they can be combined with

Equation (2.16a) to yield

'£*vz£ . . (2.16b)

2 o

dx dx dy vf dx 4_ j vf
" T Sl Y ' 2 dx + 2g ' 2 dx \ 2g

or

Since

(2.17)
b

and for steady, one-dimensional flow x is the only inde
pendent variable. Equation (2.16b) becomes

dx (2.19)

Comparison of Equations (2.18b) and (2.19) gives

the resistance forces as

7Ad* f-v) . . (2.20a)

r!

I!
! I

hit.:".1 -.



Figure 2.4. Simplified representation of energy in steady flow.

Equation (2.3) becomes

Thus:

The continuity equation (Equation (2.1)) can be

written as

8A

Therefore

P K '

(2.20b)

Many expressions have been proposed for the com

putation of the energy line slope Sf. A commonly used
relationship is the Manning formula which expresses S f in

terms of the hydraulic radius. In this study it was found
convenient to assume that the energy line slope is propor

tional to the kinetic energy of the flow. Since the ki netic
energy depends on the square of the flow velocity , the
following general expression can be written

sf = k|v|v (2.22a)

When the expressions for Fp, Fg, and Fr (Equa
tions (2.12), (2.14) and (2.20a) respectively) are subst.-
tuted in Equation (2.20b), the latter equation becomes

in which
K is the resistance coefficient, treated here as a

positive constant, and defined as follows:

3V K = Ko*K, ♦Kj + Kj (2.22b)



in which

Ko is the basic resistance coefficient for a

straight, uniform channel in the natural mater

ials involved

is a term added to correct for the effect of

obstructions

is a term for channel irregularities

is a value added to compensate for meander

ing of the channel

Application of the Momentum and Continuity

Equations to Irregular Channels

The cross-sectional area of the flow can be expres

sed in terms of the flow depth, y. The relationship be

tween the area and the depth varies longitudinally for

natural channels, so that

in which

G . J|S*
(2.26)

Equations (2.1) and (2.21) when combined with Equation
(2.25) become

8A 8Q

FT + Tx" (2.27a)

in which

A = A(y . +)

is a shape factor which can include various

parameters such as the base width or the top

width, a measure of the divergence or con

vergence of the channel, etc.

8V
. . (2.27b)

These forms were found quite suitable for solution of the

equations on the general-purpose electronic analog com

puter.

Thus, the space derivative of A can be written as When Q is replaced by AV, Equations (2.27) take

the form

M , |8A
3x

>|i = eonft.

8A
9x

. (2.23)
3x 3x -° (2.28a)

The function V (x) is usually known, and for a pris

matic channel is constant. Natural channels are non-

prismatic and irregular in shape. However, for ease in

mathematical treatment, their cross-section is usually

assumed to have a regular geometric shape so that
■» -•.♦"> (2.28b)

«?■■ (2.24)

in which

B is generally a function of y

Equation (2.23) then becomes:

The equations can also be expressed in terms of A

and Q by replacing V by Q/A in (2.28). The substitution

results in the following system of equations:

30

■37
3 Q 3A Q_ 30/<
7 " A 3t A 3x * It

(2.29a)

(2.29b)

or

il.i
3x B

ili .o (2.25)

Natural channels are sometimes divided into several

sections, each of which is approximated by a prismatic

channel. Under this hypothesis the term G is equal to

zero.



CHAPTER III

REVIEW OF THE METHODS OF SOLUTION
FOR UNSTEADY FLOW EQUATIONS

The exact solution of the unsteady flow equations is
a difficult task which thus far has been successful in only
a few simplified cases. However, numerical solutions have
been obtained on the digital computer by the use of
finite-difference approximations. In this chapter, a num

ber of methods which have been applied to the solution of
the unsteady flow equations are presented. A technique
for determining the restrictions to be imposed on some of
the finite-difference methods as a result of the approxi

mations underlying them is also included.

Exact Methods

The Saint-Venant equations are quasi-linear hyper

bolic partial differential equations which are not easily
amenable to solution. Attempts at their integration by
direct analytical methods include the exact method of
characteristics and the linearization techniques.

Exact method of characteristics

Under the method of characteristics the two partial
differential equations of unsteady flow are transformed
into a system of four ordinary differential equations by

the following manipulations.

The equations of momentum and continuity (2.28)

are

1 nc equitiiuiis vi IIIVJ1HW1I.U111 "»•*•

identified as L, and L2 respectively

ay

3t

a v . o • ■ (3-la)

The unknown A should be chosen such that Equa

tion (3.2) can be transformed into a system of two total
differential equations. The expression in the first pair of
brackets is the total derivative dV/dt if

dt
= V (3.3)

For the expression in the second pair of brackets to be
equal to the total derivative dA/dt the following expres

sion must hold:

dx

dt
(3.4)

By comparing Equations (3.3) and (3.4) the values of X

are obtained as:

(3.5)

When those values of X are substituted into Equations

(3.2) to (3.4) the following system of characteristic equa

tions is obtained

dx

dt
V + (3.6a)

.(3.1b)

A linear combination of the two equations is per

formed using an unknown multiplier X:

iso - Mi - o) = o (3.2)
dx

dt
= V

(3.6c)

II

!
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dV

dt 5T-"3..-1
+ C) (i - o) = o . (3.6d)

The lines in the (x.t)-plane defined by Equation

(3 6a) are called the a-characteristic lines or a-character-

istics and those defined by Equation (3.6c) are called
the 6 -characteristic lines or B-characteristics. Equation
(3 6b) holds only along the a-characteristics while Equa
tion (3.6d) is valid only along the Characteristics.

The system of partial differential Equations (2.28)
has been converted into the equivalent system of ordinary
differential Equations (3.6). This change is desirable if
solution of the system is facilitated by the transformation.

However, the system of Equations (3.6) is also nonlinear
and still cannot be solved by direct methods of integra

tion.

Linearization techniques

Solutions by direct integration have been obtained
for simplified forms of the unsteady flow equations. In
general, such simplifications involve the linearization of
the equations. The usual way of obtaining the linear equa
tions is by substituting Q = Q0+q.A = A0 + ain Equa

tions (2.29), and retaining only first order terms in q and
a. Equations (2.29) thus become:

Solutions for the linearized Equation (3.8) have
been obtained by the Riemann-Adamard method

(Deymie, 1939), by conformal mapping (Masse, 1939),
and by Laplace transform (Lighthill et al., 1955). How
ever, because the approximations introduced by lineariza-

tion'are quite severe, the method is not very accurate and
should be used only for rough computations. Further

more, linearization requires an initial finite value for the
base flow. The technique is, therefore, not applicable to
the conditions of ephemeral streams and overland flow

where base flow values are usually zero. This same condi
tion also makes difficult the use of the general method of

characteristics for the solution of this problem.

Direct Electrical Analog

A direct electrical analog can be applied to the solu

tion of simplified forms of the unsteady flow equations. A

useful application of this method is illustrated below in

which the unsteady flow equations are expressed in the

following simplified form:

ax
■■H--I-O (3.9a)

±L ♦ -L. -fa. ♦ s. = s
a* gA at i o

C3.9b)

fe ♦

= i -o

o 3x o

(3.7a)

3a

<3-7b)

The segment of electrical transmission shown in Fig

ure 3.1 yields the following set of equations

8i + ci£-
~5x" at

(3.10a)

where vo yo Ao and Qoare respectively the velocity,
depth flow cross-sectional area, and discharge rate during
the initial steady uniform regime, while q and a are
respectively the increments in the discharge rate and the

flow area under the unsteady regime.

A single linearized equation is obtained by elimina

ting the incremental area, a, between Equations (3.7a) and

(3.7b).

•(38)

8x

at

at
♦ Ri = E (3.10b)

When the sets of Equations (3.9) and (3.10) are com
pared, it can be seen that the following variables are

equivalent:

Electrical Variables Hydraulic Variables

voltage (e)

current (i)

inductance (L)

capacitance (c)

constant voltage

resistance term (Ri)

current gradient (\r)

water depth (y)

discharge (q)

inertia coefficient (1/gA)

surface width (B)

channel slope (So)

friction slope (Sf)

excess lateral inflow (I - O)

in which

a S - S, + G
1

Use has also been made of other direct electrical analog

techniques which, in general, introduce further simplifica

tions in the unsteady flow equations.

12
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Figure 3.1. Electrical circuit applied to the solution of simplified forms of the unsteady flow equations.

Finite-Difference Methods

Several methods have been adapted for the numeri

cal integration of the Saint-Venant equations on the digi

tal computer. Those methods include:

1. The explicit and implicit finite-difference

methods for the two basic equations of con

tinuity and momentum.

2. The numerical integration of the characteristic

equations.

3. The mixed difference method.

Difference methods for the two

basic equations of continuity and

momentum

Those methods use a grid of points in the (x,t)-

plane, consisting of vertices of rectangles of sides Ax

and At formed by the system of lines.

j r 0. 1.2.3

m = 0.1,2, 3,

(3.11)

(3.12)

Values of the dependent variables are computed at

the grid points. With reference to Figure 3.2, the values at

time (m+1) At can be calculated if the solution at time

mAt is known. The difference scheme is said to be an

implicit scheme if the finite-difference formula used for

the evaluation of the x-derivatives contains unknown val

ues of the m + 1 row, otherwise the solution is said to be

explicit in nature.

H ■"

|mM) At

Im-H ai

mil.

m-l.

j-l mtl.

j-l m.

j-l m-1,

j m*l.

J m.

j m • I,

)♦■

j*l

Figure 3.2. Point numbering for the implicit and explicit

methods applied to the two basic equations of

continuity and momentum.

Implicit methods

In these methods the difference equations are usu

ally written at some intermediate point where values of

the variables are determined by linear interpolation, that

is,

13.



♦-♦•. * (3.13)

in which

4> stands for A or V,

and

0 <0<1

The corresponding difference formulae are

for the parameter 6. Their use requires a knowledge of all
values at the initial time and at the upstream end of the

channel.

Explicit methods

Most explicit methods used in connection with

Equations (2.28) approximate the x-derivatives by the dif

ference formula

2 Ax

(3.17)

These methods differ in the differencing scheme used to

(3.14) approximate the t-derivatives.

Unstable method. The simplest of the explicit

methods is sometimes referred to as the unstable method.
This method approximates the t-derivatives by the differ-

(3.15) ence formula

Equations (2.28) take the following difference form

J.

111 -eiv"+e v^ *=
,m+l

(3.16a)

..m+l

+ BA
m+l

(3.16b)

The difference equations for all the grid points of the row
m + 1 must be solved simultaneously. However, the itera

tive solution is time consuming. A procedure developed
by Ritchmyer (1956) simplifies the computations to a

large extent by first determining a recurrence formula and
then calculating the values at the entire row in reverse

order. Implicit methods differ mainly by the value chosen

a*

. m+l .m

(3.18)

Equations (2.28), written in finite difference form at

point (m, j), take the form

(3>19b)

Diffusing method. The difference scheme for the

t-derivatives is:

a, (3.20)

The difference equations are evaluated at the central point

(m.j).

I
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Leap-frog method. This method uses an approxima

tion formula for the t-derivatives of the form

3 t

. m + 1 m-1

*
2At

(3.21)

Again the difference equations are written at the central + (so-sf+c|
point(m,j).

,,.o,

p p
<*-oi 1= ° (3.22d)

Lax-Wendroff method. This method assumes all val

ues to be known at row m - 1, uses the difference scheme

of the diffusing method to obtain values at the mth row,

and then proceeds with the solution using the leap-frog
difference formula.

In the case of the explicit methods, the difference

equations written at the mesh point (m, j) suffice to com

pute the values at the point (m+1, j). Again, values of all

variables at the initial time and at the channel upstream
end are required.

Numerical methods of characteristics

Various types of difference schemes are available for

solving the system of characteristic Equations (3.6) nu

merically. In general, numerical solutions are obtained by

making use of a grid of characteristics, or by the method
of specified time intervals.

Grid ofcharacteristics method

The basic computational step under the grid of char

acteristics method consists of advancing the solution from

a curve on which the variables are known. In general, the

values at the initial time are given so that the values are
known on the line t = 0.

In Figure 3.3, P is the intersection of the a-

characteristic through C and the B -characteristic through
D. All variables are known at points C and D, and the
problem is to determine the coordinates xp , tp of P as

well as the values of Ap and Vp at this point.

With reference to Figure 3.3, Equations (3.6) can be
written in the following finite-difference form:

j • (3.22a)

Jc] ^f - i {(V V «

(S<.-S.tc)c]-l[^p"-o'p^Sic''-o'c]=0(3-22b)

Figure 3.3. Point lettering for the grid of characteristics
method.

By solving simultaneously the difference Equations

(3.22), the unknowns tp , xp , Ap , Vp can be obtained.
Likewise, the values of the variables are obtained at all
intersection points in the solution region.

Method ofspecified time intervals

In this method the solution region is replaced by a

rectangular grid of points. The dependent variables are

known at all grid points at time mAt and are to be deter

mined at time (m+1) A t. The computations can be carried
out by using either an explicit or an implicit scheme.

Explicit scheme. With reference to Figure 3.4, the

values of A and V are to be calculated at the grid point

(m+l,j). The x-coordinates of C and D, the intersections
of the at- and 6-characteristics through point (m+1, j)
with the line t = mAt, can be obtained from Equations
(3.6a) and (3.6c) as

IS



(j-l)Ax

Figure 3.4. Point numbering and lettering for the explicit

method of specified time intervals.

l|m . . . . (3.23a)
i

■• • (3.25b)

The unknowns Vjm+1and Ajm+1are obtained by
solving simultaneously the system of Equations (3.24-) and

(3.2S).

Implicit scheme. In Figure 3.5, a point P[t =
(m+9.) At, x = (j+8x) Ax] is chosen. Values of the func
tions at point P are evaluated by the following interpo

lation formula:

.m+l (3.26)

. . (3.23b)

The values of the dependent variables at points C and D

are obtained by linear interpolation between known val

ues at points(m,j-l),(m,j),and (m,j+l).

. . (3.24a)

(3.24b)

Equations (3.6b) and (3.6d) become

m + 1 ; , -

t

i|m

m&t

(J •l|Ax

m + l.

F

C
•

>

m+l.

\

"e

D

J+l

Figure 3.5. Point numbering and lettering for the implicit
method of specified time intervals.

The a-and B-characteristics intersect line x = jAx at C

and F, and line x = 0+1) A* at E and D. The t-coordinates

of those points are obtained by writing Equations (3.6a)
and (3.6c) in difference form along the a- and S-lines.

Values of the variables at those points are then approxi-
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mated by linear interpolation between adjacent grid

points. When the values thus established arc substituted

into Equations (3.6b) and (3.6d) written in difference

form along lines CE and FD. the resulting difference sys

tem is:

,m + l

dV.

i + V AV +■#- AA. = gS
dt j j B j I o

. (3.28b)

At

, rv'ntl-v'

* t I ' U I.JH[ Ax

m m

J + l Vi

- • (vs, ♦<■■)

(3.27a)

(3.27b)

Sinuillancous equations of the form of Equations

(3.26) and (3.27) are written for all grid points along row

in + 1. and the resulting system solved for values of A and

V at all the grid points in that row.

Mixed difference methods

The finite-difference approximations presented so

far involve the replacement of the derivatives by a differ

ence quotient, and are crude when compared with numeri

cal methods available for the integration of ordinary dif

ferential equations. Nevertheless, some of the latter

methods can be adapted to such hyperbolic systems as the

unsteady flow equations. When the x-derivatives are

replaced by a difference quotient, Equations (2.28)

written as x = j A x become:

Equations (3.28) form a set of ordinary differential equa

tions in the variable, t, and numerical methods, such as

the Euler method, the Adams' method, and the Rungc-

Kutta method, can be used for their integration.

Stability study by the perturbation technique

The perturbation method has been found to be use

ful in determining the stability of a differential or a differ

ence system of equations (von Neumann and Ritchmyer,

1950). In this method a small perturbation is super

imposed on the desired solution, and it is determined

whether the perturbation grows with increasing time.

Ritchmyer (1962) concluded that the method applies well

to numerical solutions of partial differential equations

because he observed that instabilities in such solutions

manifest themselves "as oscillations of short wave length

and initially small amplitude superimposed on a smooth

solution," and that "they generally appear first in a very

small region of space." Thus, when the coefficients of the

system of equations are smooth functions, they can be

assumed constant in this region and the presence of a

boundary can usually be ignored. Consequently, the lin

earized equations can be used in predicting the growth or

decay of the instabilities. Furthermore, it has been shown

that stability conditions for the numerical solution of par

tial differential equations with variable coefficients arc

essentially the same as those known for the case of partial

differential equations with constant coefficients (John,

1952),

The procedure of the perturbation method involves

replacing the dependent variables of the system of partial

differential equations by the perturbed solution. This

leads to a system of linear partial differential equations in

the disturbances called the equations of first variation.

Those equations are used to predict the behavior of the

disturbances.

Equations offirst variation

When the perturbed solutions A + 6 A and V + 6 V

are substituted for A and V in Equations (2.28), in view

of the above assumptions, the following system is ob

tained:

(3.29a)

!

dA

-l4A.Av.tv.AAj - d-o). . . . (3.28a)
± 6V+f Fx = 0 (3.29b)
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Equations (3.29) are the linear equations of first
variation for the basic equations of unsteady flow. They
can be used to study the stability of the various difference

methods.

; . (3.33a)

(3.33b)

I:

The von Neumann stability criteria

The exact solution of Equations (3.29), which
would give information concerning the behavior of the
disturbances 6 A and SV, cannot be found by direct in
tegration. The usual procedure is to assume a solution at

some time and to determine whether or not the disturb

ances grow without bounds at a later time. Under the

assumption of constant coefficients, the stability of the

difference system can be explored by making use of the

fact that an initial exponential function remains expo

nential. Thus, if the following are assumed as initial values

for 6A and 6V:

6A(x, o)

6V(x.o)

BA a
o

Ikx

Ikx

(3.30a)

(3.30b)

in which

A©, Vo, k are constant and k is real, then the
solution of Equations (3.29) at time t can be assumed to

take the form:

6A(x.O = 6A o
Ikx + a t

. . . . (3.31a)

BV(x, t) « 6V a
Ikx + at . . . . (3.31b)

At the grid point (j, m) x = jAx and t = mAt. Equations

(3.31) thus become:

6A

6 V."

. . . . (3.32a)

. . . (3.32b)

in which

The disturbances will not grow without bounds with

increasing time if U| S 1 for all real k. In other words,
all values of £ must fall on the unit circle of the complex

plane. This criteria was first used by von Neumann and

Ritchmyer (1950) to study the stability of differential
and difference equations of unsteady flow, and is gener
ally known as the von Neumann stability condition.
Ritchmyer (1957, 1962) has proved that, in the case of
the equations of unsteady flow, the von Neumann condi

tion is necessary and sufficient for stability.

Using the procedure described above, stability

studies were carried out for the explicit and implicit
finite-difference methods applied to the two partial differ
ential equations of unsteady flow. The results of these

studies are summarized in Table l.The stability condition
which the explicit methods have to satisfy is usually re

ferred to as the Courant-Friedrichs-Lewy condition in

honor of the investigators who first discovered it (Courant

et al., 1928).

The results shown in Table 1 agree with those
obtained by Ritchmyer (1962) who used a somewhat dif

ferent approach restricted to those difference methods in
which both the time and space variables are differenced.

The chief advantage of the perturbation technique pre

sented here is that it can be applied to the study of the
stability of difference, differential, as well as mixed differ

ential-difference hyperbolic systems.

General comments

The method using the grid of characteristics does

not present stability problems and is considered the most

accurate of the numerical methods for digital computers.

However, this method presents the disadvantage of finding
the solution at odd points in the (x, t)-plane, and it would
be difficult if not impossible to organize the computations

so that the intersections of the characteristics occurred at

the grid points of a rectangular mesh in the (x, t)-plane.

When the time distribution of the dependent variables is

needed at some fixed points of the x-coordinate, as is the
case in runoff studies, then tedious two-dimensional inter

polations in the characteristic grid are required. This

operation can be carried out only on a computer having a

memory sufficiently large to contain all data points.

The methods of specified time intervals, although

less accurate, involve only one-dimensional interpolation,

and the values of the variables on a line x = constant can

be obtained at different times. However, these methods

share the disadvantages inherent to the explicit and im

plicit methods.
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Table 3.1- Stability conditions for the implicit and explicit finite-difference methods.

Method

Implicit

Unstable

Diffusing

Leap-frog

Lax-Wendrof

cos kAx-i
Âx

sin kAx

sin kAx

V + -JTE.
/s B sin kAx

■'E (V± V^'l.InkA,

Same as the diffusing and leap

frog methods.

When stable

always

never

I-L(v^)|<.

Jl
il

The main advantages of the implicit methods are
that they can be made unconditionally stable, and the
calculations are well organized on the rectangular grid of
points. Although it is generally believed that the implicit
methods are most suitable for river problems, some in

vestigators (Liggett et al., 1967) have reported instances in
which they were forced to abandon an implicit method
which would not give the desired accuracy.

The explicit methods have the advantages of sim
plicity, and their use involved somewhat less labor. Their
chief disadvantage is that they are required to satisfy the
Courant-Friedrichs-Lewy condition in order to be stable,
as shown in Table 1. This condition places severe limita
tions on the size of the steps A x and At. In the case of an
initially dry channel the stability condition may lead to

ridiculously small values of the steps x and t. This

situation makes prohibitive the use of explicit methods

when dealing with a natural watershed where the channel

is generally several miles long and where the duration of

the event may be several hours.

Some investigators (Thirriot et al., 1967) have re

ported that in the mixed difference method the computa

tion is reduced when compared to other difference

methods. In addition, for an initial steady state, the

steps Ax and At can be chosen much larger than those of

the explicit methods. The Courant-Friedrichs-Lewy condi

tion, however, still imposes serious limitations for an ini

tially dry channel. Furthermore, the method requires that

the derivatives of the variables be known at the initial

time.



CHAPTER IV

THE ELECTRONIC ANALOG COMPUTER
AND THE PARTIAL DIFFERENTIAL

EQUATIONS OF UNSTEADY FLOW

• I
|

.; i

The Analog Computer

The basic equations of unsteady flow were solved

using an electronic analog computer at the Utah Water

Research Laboratory. This electronic analog computer is a

general-purpose machine which can perform operations

such as addition, subtraction, multiplication, division, in

tegration, and function generation.

The electronic analog computer is particularly

adaptable for use in the solution of ordinary differential

equations both linear and nonlinear, because it can per

form directly such sophisticated operations as integration

and differentiation on a continuous basis. In addition,

because all operations take place in parallel on the com

puter, the "turn-around" time is short. This advantage and

the ease with which modifications can be introduced into

a problem or its solution enable the analog computer to

handle particularly well the problem of model regulation

where it is necessary to resort to "trial and error" explora

tions by altering various parameters within the mathemati

cal model of the system under study. The operator is

therefore able to quickly investigate the effects of a para

meter change on the solution, and thus is provided with

increased insight into the nature of the problem under

consideration. The analog computer is able to output a

continuous solution with respect to only one independent

variable. For partial differential equations, a solution in

terms of the remaining independent variables is achieved

by a difference technique.

Solution of Unsteady Flow Equations
on the Analog Computer

The differential-difference equations

The analog computer handles only ordinary differ

ential equations directly. In order to use it in the solution

of partial differential equations, the equations must be

replaced by a set of equivalent ordinary differential equa

tions. Conversion of the partial differential Equations

(2.28) into ordinary differential equations involves treat

ing one of the independent variables by finite-difference

techniques (Johnson, 1963; Jackson, 1960;Mackay et al.,

1962). This procedure is accomplished by dividing the

range of the independent variable selected into a number

of finite intervals. Either one of the two independent vari

ables can be differenced. However, because runoff data

are often given in the form of an outflow hydrograph at

the watershed outlet, it is convenient to treat time as a

continuous variable and to divide the channel length into

N equal intervals of length Ax, as illustrated in Figure

4.1.,The differential operator Dx = 3/ &c is then replaced

by the approximating difference operator Ax and the un

steady flow Equations (2.27) written at section x - jA x

become:

Mi
dt

I - O . (4.1a)

dt
gS_ + gG - gS - &xAJ (41b)

(4.1c)

in which

9. =
' J Vl V2 Vl

(4.2)

and not all a's are zero.

According to the difference quotient used for the

x-derivative, the system of differential-difference Equa

tions (4.1) will be either explicit or implicit. A backward

or forward difference formula will yield an explicit sys

tem, while an implicit system is obtained when a centered

difference quotient is used. The stability of the system of

Equations (4.1) is closely related to the difference quo

tient used.
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Figure 4.1. Flow profile illustrating finite increment procedure adopted for the flow model.

Stability

The equations of first variation (3.29) derived in

Chapter III will be used to study the stability of the

differential-difference equations. When the space deriva

tives are differenced, Equations (3.29) become:

-4-6 A + A4 6 V + V4 6A = 0 • • • ■ (4.3a)
at

-±5 VA 5V + &A 5A ' 0 .(4.3b)
dt x B x

A typical Fourier series solution is

5A = 6A e
ikj&x -fat

6 V a 6 V o

or

(4.4a)

. (4.4b)

6 A = 6 A (4.5a)

av - 8v t't C45b)
O

Again, for stability all values of E, should map in the unit

circle of the complex plane.

Explicit schemes

Backward difference quotient. A typical backward

difference formula is

Vj - 'a,1' . (4.6)

When Equations (4.5) and (4.6) are combined with Equa

tions (4.3), the equations of first variation become:

A5 V . . V6 A . . ,

C4-7a)

ABV . g5A

(4.7b)
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From Equations (4.7), a is obtained as:

a . -L (co. k ax - i - • .in k ax) (v *S%) . . (4.8)

Therefore

r

l
- 1 .v + £E)t .

'^B
»inkAx (v +^Z)

(4.9)

Condition (4.14) requires that the waves or disturb

ances be stationary or that they propagate in the upstream

direction with a celerity larger than the flow velocity. This

scheme can then be used in connection with critical flow

and with subcritical flow with backwater effects due to

some obstacle at the downstream end.

Implicit scheme

When use is made of a centered difference formula

of the form

will map in the unit circle of the complex plane if x*j (4.1 S)

exp[c°*k^|" ' (v*^)t] s i . . .(4.10) takes on the following values:

Sincet>0,condition(4.10)ismetfOrallrealkif
f h] . . . .(4.16)

v t l £ « (4.11)

In other words, the backward difference formula

can be used only if waves or disturbances are stationary or

travel downstream. Therefore, this scheme applies to criti-

cal and supercritical flows only.

Forward difference quotient. In this case, the com

mon form of the difference operator is:

'—l (4.12)

Since | C |= 1, whUe its argument is (sin kAx)/Ax
(V ± wg(A/B) ) t, £ maps on the circumference of the unit

circle in the complex plane for all real k. Therefore, the

implicit differential-difference system is always stable, arid

is applicable to any regime of flow.

Programming the equations

Since the implicit differential-difference system is

unconditionally stable, it will be used throughout this

study. When Equation (4.15) is combined with Equations

(4.1) and (2.20) the following system of differential-

difference equations is obtained:

The corresponding value of 5 is:

(4.13)

at ° * * ° " za* - (4.17a)

(4.17b)

The absolute values of E, are less than one if

(414)

(4.17c)

in which the slope of the energy line is taken as KV 2
insteady of K|V|V, because the now velocity is always

positive.
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Magnitude scaling

Equations (4.17) should be scaled with respect to

magnitude in order to utilize the full voltage range of the
computer elements, and to permit a ready interpretation

of voltages read from the computer directly in terms of
the units of the problem. When magnitude-scaled Equa

tions (4.17) can be written in the following form:

MooaA r f iM iioo it °m Jioooj

100Q
i+L . (4.20a)

ioov,2i

+ n, 7 1 7-~ 2BA.|VS

|M
100A

i-l

*I-i|m

lOOA.t 100V

(4.18b)

(4.18c)

in which the subscript M indicates the maximum expected
values of the physical variables.

Time scaling

The speed of the computer solution can be altered

by choosing a time scale factor h such that

h-r
(4.19a)

100Q.

qj|m

I0OA. (ioov \

Pvr • ■ (420c)

In this study the computer solution was speeded up

by choosing a time scale factor smaller than unity.

A computer program for Equations (4.20) is shown

in Figure 4.2. However, because of their implicit nature,

these equations applied to a particular section, j, and are
not sufficient to calculate, the variables at that section.

Therefore, equations similar to (4.20) are written at each
channel section, and the resulting system solved simulta

neously. Figure 4.3 shows the computer program for the
equations written at the first ten sections of the channel.

Effects of the time scale factor

and the resistance term on the

stability of the implicit differ
ential-difference scheme

With the introduction of the time scale facto r h and
the resistance term KV2 the equations of first variation

take the following form for the implicit scheme.

or

dt i»
(4.19b)

6V

(4.21a)

in which
t represents time in the physical system under

investigation

x represents computer time

Equations (4.18) scaled with respect to time appear as:
5 » (4.21b)
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Figure 4.2. An elemental computer program for the implicit differential-difference equations of unsteady flow.
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4.3. Computer program for the solution
fkst ten sections of a channel.

of the impUcit dBfcrentfeWtfference equations of unsteady flow at the



The corresponding values of £ are

*£?)*]. • • (4.22a)

increases as the interval is reduced (Mackay and Fisher,

1962). The ^-extrapolation method has been proposed
to compensate for the truncation errors (Hartree, 1949,

Miura and Iwata, 1966), but the use of this method also
results in an increase of the computing errors.

expf--«pf-«5£T.

Therefore

,e2, =

An alternative method of reducing the truncation

errors is the use of a higher-order difference approxima

tion (Fisher, 1956, Mackay and Fisher, 1962). This tech-
(' o6a\ , nique avoids the increase in the computing elements, but

v * b^vJ Tj • (4.22b) involves increased complication in the circuitry. Another
method based on the truncated Fourier series has been

proposed to make correction for the truncation errors

(Dieters and Nomura, 1968), but this procedure is mean
ingful only if used in connection with a hybrid computer.

Computing errors

The computing errors originate from the in
accuracies of the computing elements such as potentio
meters, amplifiers, and multipliers.

Error propagation equations. The differential-
difference equations can be written as

(4.23a)

(423b)

in-

Since K, V, h and t are always positive, £2 < 1,

the system is always stable. It can then be concluded that
the introduction of the time scale factor h and the term

KV 2 does not affect the stability of the implicit differen
tial-difference system.

Error analysis*

Two types of error can be distinguished in the ana

log solution of the partial differential equations of un
steady flow:

1. The truncation errors which are mathematical
in origin.

2. The computing errors which are due to the

imperfections of the computing machine.

Truncation errors

The truncation errors are introduced by the use of

finite difference approximations for the x-derivatives.
It can be shown that the explicit difference scheme
approximates the differential operator to the order Ax,

while the implicit scheme introduces a truncation error
of the order Ax2.

Because there exists no known exact solution to

general shallow water equations, evaluation of those errors

is not possible. Nevertheless, the truncation errors can be
regulated by the choice of the step Ax. For example, a

reduction of Ax decreases truncation error. However, this
procedure requires the use of additional computing com
ponents and consequently, increases the computing errors.

Further, it has been shown that inherent instability in the
analog solution of partial differential equations sometimes

dA,

dv.

dt

. , (Aj. A2 V,.

i "V A2 V

. . ; . i. o). . (4.24a)

. . (4.24b)

The solution of this system on the analog computer
involves the generation of the function fj and their inte

gration to produce Aj and Vj. In those processes, errors

are introduced due to amplifier drift, multiplier noise,

potentiometer loading, discretization of the input func

tions, and variation in input voltages. Consequently, the
exact operations

Ai - fo 'a -1 (Aj - v Aj ♦ i- vj - r vj ♦ ,• i. <»<*■ ■ (4.25a)

Vi = /o\ (Ai ■ i- Vr vj - r V V i- so)dT • (4.25b)

are implemented on the electronic analog computer as

/„ i ■ ■ (V i- i- vj • i- V r '• dr

(4.26a)

(4.26b)
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The computing errors are the differences between

the computer solutions and the exact solutions, or

\

6A. = A. - A.

5V. = Vj -V.

(4.27a)

(4.27b)

Making use of the Taylor series expansion and neg

lecting terms of order higher than one, the following

relationships can be derived:

The forcing functions E: are composed of a num
ber of primary errors of the individual computer elements,
and their systematic determination is beset with many

difficulties. Further, the error propagation equations are

nonlinear and cannot be solved by direct methods of in
tegration. To facilitate the analysis of the errors, the non

linear system (4.30) is replaced by the following linear

system

ZhAx
5 v

j + 1

(4.31a)

= ',

V >• vi -1-vr vi +''s°'

(428b)
By combining Equations (4.25), (4.26), (4.27), and

(4.28) the computing error propagation equations are ob

tained as:

(4.29a)

in which A and V are assumed to be constant.

Computing stability. The difference between the

error propagation Equations (4.31) and the equations of
first variation (4.21) is the addition of the forcing func
tions E2j.j and E2j in Equations (4.31). Since the
error propagation equations are nonhomogeneous, the

condition for stability of those equations is more restric

tive than that of system (4.21). The error-propagation

equations will be said stable if, for all finite E, the disturb
ances 6 A and 6V remain finite for all t . This condition

will be met if the solution of the homogeneous equations

remains finite for all t and goes to zero faster than
1/t (Vichnevetsky, 1967). A Fourier series solution of

the homogeneous system was obtained as:

6A. a BA exp
I °

BV,

(4- .32a)

or

(4-.32b)

v
j +

5 A , ♦ E,. (4.30a)

gKV,

&6V. * Eiy ■ ■ ■ (4.30b)

Because the values 6Aj and 6Vj as given by
Equations (4.32) remain finite for all t and go to zero

faster than 1/t when t ->°°, the error propagation can

be said to be stable.

Note that 6A} and 6Vj will go to zero fa.ster if
the time scale factor h is less than one. Therefore, a value

of h smaller than unity strengthens the stability of the
error propagation while a value of h larger than one weak

ens it.



CHAPTER V

THE SURFACE RUNOFF MODEL

The flow process considered here is that generated
from rainfall on the surface of a drainage basin. It includes
only that portion of the runoff cycle shown inside the
dotted line in Figure 5.1. As a consequence, the surface
model described here is restricted to the following situa

tions:

1.

2.

3.

Short-time duration runoff events in which

interflow and groundwater flow play no part.

Watersheds in which infiltration and seepage

water does not reappear as surface flow within

the watersheds.

Runoff events for which interflow and

groundwater flow rates, if any, have been cal
culated separately and are known at any point

of the drainage basin.

When rainfall occurs over a watershed, only part of

the rainfall appears at the outlet of the basin. The remain

ing portion of the rainfall is accounted for as losses on the

watershed. Some of the rain which falls in the early part

of the storm is both intercepted by the vegetal cover and

stored in depressions in the soil surface, from where it

eventually either evaporates or infiltrates to the upper soil

layers. The remaining part of the rainfall is the effective

rainfall which gives rise to overland and channel flows

while being depleted by infiltration and channel seepage.

Thus, the model discerns three phases in the surface run

off process. First, the phase in which an effective rainfall
is produced. Second, the overland phase in which water

flows over the land surfaces toward an established chan

nel. Third, the channel phase whereby water flows

through the channel system, and ultimately results in an

outflow hydrograph at the outlet of the watershed.

| Evaporation |

r [Precipitation, P I

| Interception

Depression

Storage

Water at

Ground Surface

~l

Overland

Flow

Channel Flow

I Infiltration |

| Infiltration |-

£

Root Zone

Storage

Surface

Outflow

Channel

Seepage

->»j Interflow |

|Evapotranspiration
Deep Percolation to

Groundwater Basin

Groundwater

Storage

Groundwater

Outflow

Figure 5.1. Schematic diagram of the runoff cycle.
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Treatment of the Watershed Rainfall raie

The watershed is divided into Z subzones on the

basis of its physiography. Each subzone, which is in fact a
small drainage basin containing only one main stream

channel, is replaced by an equivalent subbasin having the
same surface area as the subzone, and composed of two
identical rectangular sloping planes transected by the main
channel as illustrated in Figure 5.2. The rectangular planes
which constitute the field of motion of the overland flow,

A digital computer program has been written to in

tegrate point precipitation measurements in terms of both

time and space (Kwan et al., 1968). The program involves

the use of interpolation techniques to determine isohyetal

lines over a watershed for a given interval of time At. The

points at which each line crosses the subzone boundary

are located, and the elemental areas bounded by two adja

cent isohyetal lines and the subzone boundary are calcu

lated. Elemental rainfall volumes are then computed

according to the formula

a. Natural subzone

b. Equivalent subzone

Figure 5.2. Sketches showing natural subzone 3 and its

equivalent subzone.

have a width equal to the length of the main stream chan

nel within the subzone, and a slope which is an average

between the land slope and the slopes of the smaller tri

butary streams of the subzone. The portion of channel in

the equivalent subzone is assumed to be a straight channel

having the same length, average slope, and width as the

corresponding segment of the natural meandering channel.

The stream channel is fed on both sides by outflow from

the sloping planes, and at its upstream end by outflow

from the preceding subbasin. A detailed schematic dia

gram of the surface runoff model is shown in Figure 5.3.

Effective Rainfall Rate

The rate of effective rainfall in Figure 5.3 is ob

tained by substraciing the retention rate Rr from the

rainfall rate P,..

(5.1)

in which

a; is the elemental area

Pi and pj+i are the depths of rainfall on two adja

cent isohyetal lines.

If the elemental area is bounded by one isohyetal

line and a portion of the subzone boundary, rainfall values

are determined by interpolation at several points along the

portion of the boundary; then the rainfall depth over the

area is computed as the average between the value on the

isohyetal line and the average of the values at the chosen

points along the boundary.

The rainfall volume over the subzone during the

period of time At is computed by summing the volumes

over all elemental areas comprised in thesubzone, or

vol = (5.2)

ivision of the total volume obtained from Equation (5 .2)

oy the subzone area and by At, yields the rainfall rate

over the subzone for the time interval At, that is,

p » (5.3)

Retention fate

Losses due to the combined effects of depression

storage and vegetation interception are termed retention.

Once the vegetative cover becomes thoroughly wetted a nd

the surface depressions are filled, additional retention

losses become very small. In general, the retention losses

can be expected to be relatively high at the start of the

storm event and to become negligible as the event p ro-

gresses. An exception is the case of an initially wet water-

■>-<-)
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Figure 5.3. Flow chart for the surface runoff model.
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shed where the retention losses can be assumed to be

equal to zero. It is assumed that the maximum rate at

which rainfall is lost to retention storage is given by the

following expression (Riley, 1967):

(5.4)

in which

Rc$ is the retention storage capacity of vegetation

and land surface, and

R (tj = (5.5)

1vj2-.Im
4hAx|V,|,

100 q,

100 V
ill

(5.8b)

M \

/100 V.

. . . (5.8c)

The actual retention rate, Rr, is given by the follow

ing equations:

• r = o , u p » o (5.6a) Infiltration rate on the planes

i = p ,ifo<p<R ....(5.6b)

B = R . if P 2 R
r cr r cr

(5.6c)

The effective rainfall rate is then obtained as

= p -r. (5.7)

The program for computing Rcr and Pe is shown in Fig

ure 5.4. Obviously, there will be no water available for

surface runoff and infiltration until the rainfall rate ex

ceeds the retention capacity rate.

Overland Flow

The rectangular sloping planes of the equivalent sub-

zones of the model are treated as wide open channels, and

the unsteady flow equations arc used to obtain the dis

charge per unit width, qn, at the downstream edge of the

planes. The overland flow equations are obtained by sub

stituting Vj for A3 , qj for Qj, Pe for I and f r for O in

Equations (4.20). The term G is equal to zero (the shape

factor a is constant in Equation (2.26) and Equations

(4.20) become:

100y. /•t[|Nm
+ U'jIm

100P loot

ZhAxlyj

100 q;j
IVll M
2hAx|y.|

100 q

Ihi
. .(5.8a)

The maximum rate at which water can enter the soil

at a particular point under a given set of conditions is

called the infiltration capacity rate. From his experiments,

Horton (1933) found that this capacity rate has a max

imum and a minimum value. The maximum value for a

given soil occurs at the beginning of a rainfall event when

the soil is dry. As the soil moisture deficit is replenished

and the soil crumb structure is changed due to moisture

absorption, the capacity rate decreases until it approaches

a stable minimum. This minimum is the percolation rate

of the soil profile. Under conditions of saturation, or for a

watershed initially wet, the infiltration capacity rate at

any time is equal to the minimum capacity rate.

According to Horton, the infiltration capacity curve

can be represented by an equation of the form:

(5.9)

A program to generate f cr is shown in Figure 5.5.

The actual infiltration rate on the planes is de

pendent on the effective rainfall rate and its relation to

the infiltration capacity rate. If to denotes the time at

which the rainfall starts, te the time at which the effec

tive rainfall rate Pe exceeds the infiltration capacity rate

fcr, and ts the time at which the overland flow stops,

then the actual infiltration rate per unit area can be de

fined by the expressions:

< t 1 = p (5.10a)

(3.10b)
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Figure 5.4. Computer program for computing the retention capacity rate, Ra , and the effective rainfall, Pe.

It is emphasized that infiltration is assumed to occur Upstream boundary conditions

at the capacity rate as long as water is available in deten

tion storage on the watershed. The subZOnes were established such that no flow is

assumed to cross the upstream section of the sloping

Initial conditions PIanes (see F'8"re 5.6), that is,

The solution of Equations (5.8) on the analog com- i, = o (5.12a)

puter requires that the values of V and y at all sections be

known at the initial time. In this model the sloping planes

are treated as initially dry channels so that vi = ° (5.12b)

If it is further assumed that

t = 0 . y(0) = 0 .and V (0) « 0 ... .(5.11,

yi = *z (5.12c)

Other conditions could be used if the calculations
were to start at a time different from that at which the then all variables are known at section 1, and computation

rainfall started. can start at section 2.

I

I
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Downstream boundary conditions

The downstream edge of the sloping planes is treat

ed as an overfall (see Figure 5.6). Thus, when the overland

flow is critical or supercritical, the downstream end can be

considered as a continuing plane, and there is no need to

alter the equations of flow at that section. However, if

subcritical flow prevails on the planes, the flow at the

downstream section is critical, and the momentum equa

tion is then replaced by:

V = (5.13)

When the implicit scheme is used the difference for

mula (4.15) can be used at the downstream section by

assuming that

.(5.14)

Channel Flow

The channel system is fed on both sides by the flow

from the downstream end of the sloping planes, so that

the term I in Equations (4.20) is replaced by 2q
n

Seepage rate in the channels

From his experiments on seepage, Darcy (1856)

found that the rate of seepage through a column of soil

increases with the depth of water over the soil surface.

The infiltration capacity rate should, therefore, be ex

pected to be higher with higher depth of water. In the

case of overland flow, the depth was small so that its

influence on the infiltration rate was assumed negligible.

The infiltration capacity curve given by Equation (5.9)

can be looked upon as the seepage capacity rate curve

under conditions of insignificant depth. But with a signi

ficant depth, as is the case for channel flow, the seepage

capacity rate Fcr can be assumed to be

F » I
cr cr

.(5.15)

The seepage capacity rate per unit length of channel

is given by:

q = BF
erg Drcr (5.16)

in which B represents the average width of channel.

If to represents the starting time of the storm,

t a the time at which the channel inflow 2qn exceeds the

seepage capacity rate q and ts the time at which

channel runoff ceases, then the actual seepage rate

qrg per unit length of channel can be obtained as

■ ■ ■ ■ (5.17a)

t < t <
a

(5.17b)

Again attention should be called to the fact that

seepage will continue at capacity rate until water is no

longer available in the channel.

For channel flow the programming Equations (4.20)

become:

too a 100.

Mm

KJm Z'00"

2hAx|A|aj|m |M/
ZhAxlAJ Iqj-.|m T. (5.18a)

dr C5-18b)

i:

s

in which

fcr
y

c

is given by Equation (5.9)

is the depth of channel flow

is a constant which depends on the soil per

meability and the distance of the water table

from the ground surface

Equation (5.15) is somewhat similar to Darcy's law

(Amisial et al., 1968).

Initial

100Q.'
h

conditions

m|vj|m
qj|m

100 A.

|>)
100 V.

|vj|m ;
. (5.18c)

Values of the variables A and V at all sections must

be known at the starting time of computation. In the case

!j :
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of an initially dry channel those values will be equal to

zero.

Upstream boundary conditions

Either one of two conditions can prevail at the up

stream end of a channel depending upon whether or not

the drainage basin under consideration receives the flow

from a preceding basin.

1. If the watershed receives no flow from a pre

ceding watershed then

= v.

If it is further assumed that A, = A2 or else y, =

y,, then computation can start at section 2.

2. If, however, the upstream section of a channel

coincides with the outlet of a preceding water

shed, then the outflow and stage hydrographs

will be known at that section. The difference

formula (4.15) can be used at that section by

assuming

Downstream boundary conditions

In general a relationship between discharge and

depth is available at the outlet of a watershed. If such an

expression is not available, a relationship between the

depth of the cross-sectional area, the velocity and the dis

charge can be developed on the basis of the geometry of

the outlet section.

Conditions at the junctions

At a junction the flow in each branch is routed

separately, and the resultant outflows are combined by

addition to yield the flow at the junction.



CHAPTER VI

PROCEDURES OF MODEL

REGULATION AND VERIFICATION

The analog program shown in Figure 4.3 provides

the solution to the shallow water equations for the general

case of unsteady flow. It is necessary that the program be

adapted to the particular flow conditions found on a

watershed. Also, some unknown parameters are included

in the runoff model presented in Chapter V. The model

must be fitted to a particular watershed by determining

numerical values for those parameters applicable to the

watershed. These fitted values are then checked by a veri

fication procedure.

Adaptation of the Analog Solution

to Flow Conditions of a Watershed

In order to adapt the solution program to a particu

lar watershed, it is necessary to adjust the sign and the

value of the dependent variables in terms of actual condi

tions and the physical layout of the space coordinate

system. Surface runoff consists primarily of gravity flow.

Consequently, by choosing the x-axis in the direction of

the slope of the channel the flow will be in the direction

of increasing x, and therefore always will be positive.

Further, if the x-axis coincides with the center line of the

channel bottom, the flow depth will be either zero or

positive. Under these conditions neither the flow depth

nor the flow velocity can be negative. This is implemented

in the analog program by the introduction of two diode

limiters which limit the values of the flow velocity and

depth to positive values only.

Because of the losses to retention storage and infil

tration, surface runoff does not start at the same time as

precipitation. The model assumes the flow to be zero until

• the precipitation rate exceeds the retention and infiltra

tion rates. This condition is easily met for the flow depth

and area, since these quantities are primarily the result of

the integration of the difference between the precipitation

rate on one hand and the retention and infiltration rates

on the other. However, with the presence of the constant

slope term in the momentum equation, the velocity can

assume values irrespective of the flow depth and the pre

cipitation. This difficulty is overcome by the use of a set

of comparators which prevent the. computation of the

flow velocity from starting until the flow depth reaches a

specified value. In the absence of obstructions or struc

tures, the velocity computation can be allowed to start as

soon as the flow depth exceeds zero, unless field observa

tions indicate that there should be a greater amount of

water in detention storage before the occurrence of flow.

If such is the case, the depth for incipient motion should

be measured and then be specified in the model to induce'

the calculation of the flow velocity.

The provision of the comparators allows the pro

gram to be used for cases in which a reservoir or a pond is

present in the channel system. In this case the reservoir is

replaced by an equivalent reservoir or channel having the

same length, storage capacity, outlet section, and average

width and slope as the reservoir. The velocity compu

tation at all sections upstream from the outlet can be

allowed to start when the flow depth at those sections

exceeds zero. At the outlet section the velocity is kept at

zero. In other words, there will be no flow until the depth

has built up to the level of the spillway inlet. At an over-

fall spillway the flow will be kept at zero until the reser

voir is full, and conditions similar to those derived in

Chapter V for the downstream boundary of the overland

flow, will be used at the overfall. For conduit spillways

such as chute and tunnel spillways, the flow computation

will be allowed to start when the water surface reaches the

level of the conduit inlet. The unsteady flow equations for

channel flow can be used as long as free surface flow

prevails in the conduit. However, once pressure flow is

established, the flow depth will have to be replaced by the

instantaneous piezometric head in the unsteady flow

equations in order to compute the flow through the con

duit. The piezometric head at the conduit entrance is the

difference between the depth of water in the reservoir and

the level of that entrance.

Model Regulation

The surface runoff model includes a number of

parameters which can be divided into two types, namely,

the function parameters and the condition parameters.
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Function parameters

The function parameters are those watershed char
acteristics which are constant with respect to time such as
length, width, and slope of the planes and channels. Gen
erally speaking, these quantities are subject to direct mea
surement by established methods. Function parameters

vary with respect to space, but average values are usually
established for each subzone of the watershed. The equi
valent subzone concept discussed in Chapter V is a spatial
integration technique for function parameters.

Plane characteristics

The function parameters pertaining to the plane are

the width, length, and slope of the plane. The width of
the plane is equal to the length of the segment of channel
in a subzone. Upon measuring the surface area of the
natural subzone, the length of the half-plane ,s obtained
by dividing the subzone area by twice the length of the
portion of channel in that subzone. This is illustrated in
Figure 5.2. The plane slope is an average of the slopes ot
the land surfaces and the tributaries within a natural sub-
zone. Aerial photographs or field surveys are required for
the determination of the land slopes.

Channel characteristics

The channel dimensions and slope are also consid
ered as function parameters. The length of the segment of
channel in each equivalent subzone is the meandering
length of the corresponding portion of the natural chan
nel This length, which is equal to the plane width, can be
measured directly from a topographic map. The cross-
sectional dimensions of the channel must also be meas
ured When the assumption is made of a rectangular chan

nel the width and depth for each channel reach Ax are
sufficient to define the cross-section. From aerial photo
graphs, the width and depth can be obtained respectively
as the averages of the widths and of the depths ui the
corresponding natural channel reach. If another channel
shape is assumed, a special field survey may be required
for the measurement of the channel cross-sectional dimen
sions For the sake of simplicity, it is desirable that each
section Ax of the natural channel be replaced by an equiv
alent prismatic channel. The slope of a channel reach is
the weighted average of the slopes within the correspond
ing natural channel reach. It is obtained from a topo
graphic map or from aerial photographs of the watershed.

Condition parameters

The condition parameters are those parameters

which vary with time within a given watershed and usually
cannot be obtained by direct measurement. They are gen
erally dependent upon surface and moisture conditions ot
the watershed. Even though these quantities are not read

ily available or measurable for inclusion in a model, nu
merical values are required and must be estimated for each
subzone of the watershed. Condition parameters include

the retention and infiltration rates, and the roughness co-

efficients.

Retention rate

The retention rate accounts for losses due to inter

ception and depression storage. Its dependency on factors
such as vegetative cover, soil surface condition, and water
shed moisture status, explains the impossibility of obtain
ing it by direct measurement. This situation makes it

compulsory to resort to some indirect method, such as
model fitting, for the determination of the constants in

volved in the retention rate equations. The retention rate

for a watershed is determined when the constants Rcs and
kr of Equation (5.4), the rainfall rate, and the watershed

moisture condition are known.

Infiltration rates

The model distinguishes an infiltration value for the

plane and another for the channel within a subzone. This
distinction is substantiated by the fact that the channel
bed material is often more permeable than that of the
land surfaces. The model also provides for different values
of the infiltration capacity rate for each subzone of a

watershed.

The determination of the rate of infiltration is ren

dered difficult by the fact that this rate is a function of
the rate of effective rainfall, the infiltration capacity rate
the depth of water above the ground surface, and the soil
moisture conditions. Direct measurements of infiltration
are made in situ using artificial sprinkling devices or small
surface runoff plots. Such measurements, however, ap
proach point measures of infiltration which may vary con

siderably from the average, and are frequently not repre

sentative of the whole watershed. Furthermore, in situ
and plot measurements are not often available. Therefore,
in most cases, it is necessary to use an indirect method tor
determining the constants of the infiltration capacity rate
equation. According to Equations (5.9) and (5.15), the
constants to be determined are the maximum infiltra-tion

capacity rate fo.the minimum infiltration capacity rate
fm, the time constant kf, and the constant c applied in the

computation of channel seepage loss.
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Roughness coefficients

Within the analog computer program a diff«rent
roughness coefficient may be used for each plane: ana
channel section, depending upon the conditions of th e soil
surface such as irregularities and vegetative cover an d me
meanderings and irregularities of the channels. Usually,



the channel bed has less vegetation cover than the sur

rounding land surfaces, and higher roughness coefficient

values therefore generally can be expected in the case of

overland flow. Values of the roughness coefficients for the

planes and the channels can be obtained by the indirect

method of model fitting.

Procedure

The mathematical model of the surface runoff pro

cess is not complete for a particular watershed unless the

condition parameters are known for that watershed. The

model must be fitted or regulated. That is, the condition

parameters must be adapted to each watershed. Model

regulation, therefore, implies the determination of a set of

values for the constants involved in the* condition para

meters such that they fit the watershed under study.

The model is regulated by the method of data ad

justment. This method involves the fitting of the condi

tion parameters to a set of data under a particular set of

criteria. A runoff event for which good data are available

is used to develop estimates of the condition parameters

that fit the general model to the given watershed. It is

necessary that precipitation and runoff data be reliable, or

that their accuracy be known. Antecedent precipitation

and runoff can be used as an index to the watershed mois

ture status. Data concerning the topography of the water

shed are needed in order to obtain the function para

meters.

The next procedural step is to assume numerical

values for the adjustable constants of the condition para

meters. With those assumed values, the rainfall can be

routed over the land and through the channel system to

produce the outflow hydrograph at the outlet of the

watershed. A good agreement will seldom be obtained on

the first trial between the computed and the measured

runoff hydrographs; therefore, the values of the condition

parameters are adjusted in subsequent trials until a good

Tit is achieved. The set of values of the condition para

meters for the watershed is adopted for which a good fit is

obtained under the selected set of criteria.

The adjustment or fitting of the condition para

meter values is performed through a trial and error pro

cedure. The values assumed in the first approximation are

changed or adjusted and the computations are carried

with the modified set of condition parameter values. The

procedure is repeated until a close fit is obtained between

the computed and measured hydrographs. At the end of

each trial it is necessary to decide which condition para

meters will be modified and the degree of change for the

subsequent trial. This decision is governed primarily by

the closeness of fit in the previous trial, the operator's

knowledge of the runoff process, and also the experience

he has gained with the mathematical model and its re

sponse to changes in the condition parameters. Familiarity

with the model and its response to parameter changes can

be acquired by making a sensitivity analysis prior to the

regulation phase of the study.

Taking for granted that the fit between the com

puted and the measured hydrographs should be close,

some measure of closeness should be used .in order to

decide whether or not a particular agreement is satis

factory. In other words, the data fitting technique re

quires the selection of a set of criteria for goodness of fit.

These criteria depend on the accuracy of the data, the

objectives of the study, and the order of priority given to

the hydrograph characteristics. In this study, efforts were

made to match the principal characteristics of the com

puted and measured hydrographs in the following order of

priority:

1. hydrograph peak

2. time to peak

3. volume of flow

The criteria for goodness of fit are expressed as tol

erance limits or errors which are permitted on the princi

pal characteristics of the watershed outflow hydrograph.

Model Verification

S

Methods and criteria for goodness of fit

Obviously the computations cannot start unless

some beginning numerical values are assigned to the con

dition parameters. The initial selection of those values is

based upon available data, about those parameters and the

processes they represent, the antecedent moisture con

dition of the watershed, and, if available, upon previous

studies and measurements made on the watershed.

The numerical values of all the model parameters

are known for a given watershed once the model has been

regulated for that watershed. In the verification phase of a

study the accuracy of the fitted parameters and of the

model is checked. This is done by selecting other rainfall

events associated with good data. The regulated model is

then used to predict the watershed outflow hydrograph,

and the criteria for goodness of fit are applied to assess

the closeness of fit between the predicted and the meas

ured outflow hydrographs.
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CHAPTER VII

THE EXPERIMENTAL WATERSHED

A subbasin of the Walnut Gulch experimental
watershed was selected to test and verify the, surfacejun-
off model developed in the preceding chapter. Walnut
GulcHs a 58-square-mile watershed located at Tombstone
in southeastern Arizona (see Figure 7.1). It is an ephem-
ral tributary of the San Pedro River which receives the
outflow from Walnut Gulch at Fairbanks Anzona Inten
se study of this basin has been undertaken by the agri
cultural Research Service of the U.S. Department of Agri
culture which has established an intensive network of
hydrologic instrumentation on the watershed.

Geology

A layer of coarse-grained Late Pleistocene sedi

ments varying in depth from 0 to 100 feet, constitutes
Ztop st7ata of the valley fill of the region within which
Walnut Gulch lies. This layer is underlain by a deposit ot
calcium carbonate and a layer of fine-grained early to mid
dle Pleistocene sediments. The sediments originate mainly
from granitic rocks. The regional groundwater table is sit
uated at a depth of approximately 400 feet beneath the

land surface.

Topography

Elevations vary from 4,200 feet above mean sea

level at the western end of the watershed to over 6,000
feet at the eastern portions of the basin. Consequently,
gradients are steep and stream channel slopes average ap

proximately 1 percent.

Soils and Vegetation

The soils of Walnut Gulch can be grouped into six
major associations (Figure 7.2) and strongly reflect the
influence of parent rocks and the temperatures prevailing
during wet seasons. Most of the soils are either gravelly or
stony and medium-textured to bedrock The^climax vege-

tation of the area is Desert Plains Grassland. Today, much
of the country originally described as grass-covered is
predominantly brush (Figure 7.3). Black grama andcurly

mesquite grasses prevail in most of the eastern portion of
the area with the brush areas dominated by wh.tethorn,
creosotebush, tarbush and sand paper bush.

Instrumentation

A network of 91 recording gages is used to measure
precipitation on the watershed. Runoff is measured at the

outlet of the watershed and also at the outlets of 11 sub-
watersheds within the Walnut Gulch drainage basin.

Precipitation

Annual precipitation on Walnut Gulch averages

about 14 inches. Thirty percent of the annua precipita
tion occurs as low-intensity rain or snow during winter,
Z generates no runoff over the watershed. The remain
ing 70 percent consists of convective runoff-producing
storms, and occurs as short-duration, high-intensity rain

during the July to September period.

Subwatershed 11

The subunit of the Walnut Gulch experimental
watershed which was selected for simulation is subwater
shed 11 (see Figure 7.4). This subbasin, with a drainage
area of 2 035 acres, is situated in the northeastern portion
of Walnut Gulch. The soil is the Hathaway-Bernardino-
Sonoita association with small areas of Camoro soil in the
alluvial swales. The vegetation is composed of black grama
and curly mesquite grasses with limited amounts of brush

primarily along the channels (Figure 7.2 and 7.3).

Drainage conditions

The channel system of subwatershed 11 comprises

three main branches as shown in Figure 7.5. The middle
channel traverses the entire length of the subwatershed
and is 4.40 miles long with an average slope of 1.98 per
cent The north channel with a length of about 2 miles
and an average slope of 1.98 percent, enters the middle
channel some 3,000 feet upstream from measuring flume
11 The south channel is 3.6 miles long and has an average

slope of 2.03 percent; its junction with the middle chan
nel is located one thousand feet upstream from flume 11.
The channel bed material, made of unconsolidated sand
and gravel, comprises particles exhibiting a .logarithmic
normal distribution with a geometric mean particles size
of 2 3 mm Fifty-four percent of the total material lies in

i
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BRUSH

L—J Whitethorn, Creosotebush
and Tarbush

Kj-H Mortonia, Whitethorn,
and Creosotebush

I 1 Oah Woodlond

GRASSLAND

rrr-i Block grama

t-taJ Curly mesquite

prg Black grama

^■—^ Blue grama

LL1JJ Tobosa grass*
Sideoots grama

CD Tobosa grass (swale)

Figure 7 3. Vegetation map of the Walnut Gulch experimental watershed.
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I, subwatershed 11

watershed boundaries

runoff measuring stations

measuring rain gages

drainage (major)

Figure 7.4. Map of the Walnut Gulch experimental watershed showing the location of subwatershed 11.
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the gravel range, that is, larger than 2 mm. The channels
are dry about 99 percent of the time and have a potential
to absorb large quantities of runoff (Renard et al. 1966).

Natural subzones

Subwatershed 11 has been divided into 9 subzones
according to the watershed treatment procedure outlined
in Chapter VI (see Figure 7.5). The physical char
acteristics of each subzone, measured from topographic
maps and areal photographs of the Walnut Gulch, are list
ed in Table 7.1. The average depth of the channels is 6

feet.

Equivalent subzones

The equivalent subzone has the same drainage area

as the natural subzone. Table 7.2 shows the physical char
acteristics of the rectangular sloping planes and of the
portion of channel within each equivalent subzone. It is
further assumed that the channel of the equivalent sub

zone is rectangular in cross-section and has a width equal
to the average width of the natural channel. Under this
assumption, the term G defined by Equation (2.26) js
equal to zero, and the flow cross-sectional area is equal to

the product of the channel width and the flow depth.

Boundary conditions

Overland flow

The upstream boundary conditions for the plane are

those given by Equations (5.12). The condition of a con
tinuing plane, as described in Chapter VI, is assumed to
prevail at the downstream end of the plane.

Channelflow

Subwatershed 11 receives no water from the neigh
boring subbasins, and the conditions at the upstream end
of each channel are expressed by Equations (5.19).

Flume 11 is located at the downstream end of the
channel network. Figure 7.6 shows the cross-section of
the flume measuring section. The conditions at the section

are:

.'.i

Table 7.1. Physical characteristics of the natural subzones.

Subzone

No.

1

2

3

4

5

6

7

8

9

Area

(acres)

136. 9

75.4

397.8

189. 7

241. 3

252.7

268.4

73.9

399.0

Channel Dimensions

Length

(feet)

5,280

2,640

7,420

1,980

5,620

7,260

6,270

3, 000

13,000

Average

Width

(feet)

20

25

30

20

25

20

25

20

30

Average

Slope

. 025

. 021

. 022

. 024

.018

. 016

.015

. 015
i

. 023

Average

Land

Slope

0. 040

0. 050

0. 038

0.050

0. 051

0. 042

0. 045

0. 050

0. 048

m
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Table 7.2. Physical characteristics of the equivalent subzones.

Subzone

No.

1

2

3

4

5

6

7

8

9

Area

(acres)

—

136.

75.

397.

189.

241.

252.

268.

73.

399.

9

4

8

7

3

7

4

9

0

Channel Dimensions

Length

(feet)

5,

2,

7,

1

5

7

6

3

13

280

640

420

980

620

260

270

,000

,000

10 0 10

scale in feet

Figure 7.6. Measuring section of flume 11 located at the outlet of subwatershed 11
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yS 1.5(1. . A = IOy2 and B = 20y . . .(7.1a)

y > 1.5 ft. . A = yZ +27y - 20.25

and B = 2y +27 • ■ • (7.1b)

Flume II has a slope of 3 percent at the measuring sec

tion.

Runoff events

The runoff events selected fur the purpose of this

study were those of July 20 and July 29, 1966. A meas

ured volume of 191.4 acre feel of precipitation fell on

subwatershed 11 on July 20, 1966. The rainfall lasted one

hour, with the major portion fulling on the eastern part of

the subwatershed. Table 7..1 gives the depth of rainfall for

5-minute intervals for each subzone. This rainfall event

was the first runoff-producing storm of the year on sub

watershed 11, and, consequently, infiltration and reten

tion losses could be expected to be relatively high.

The rainfall of July 29, 1966, occurred on a water
shed still wet from a rainfall event of the preceding day.

On July 29 subwatershed 11 received 60.7 acre feet of

rain in 40 minutes. The storm was concentrated mainly in

the western subzones of the subwatershed. The rainfall for
5-minute intervals is given in Table 7.4 for each subzone.

Subzone 9 of subwatershed 11 contains 2 stock
ponds, and did not contribute any flow on July 20 and

July 29, according to records from the runoff-measuring

station located at its outlet. Consequently, for these

storms subzone 9 was treated as blind drainage, and ex

cluded from hydrologic analysis in the simulation of the
runoff.

|<

Table 7.3. Precipitation data for event of July 20, 1966, on subwatershed 11 of the Walnut Gulch experimental
watershed.

Subzone

Number

1

2

3

4

5

6

7

8

9

5

0

0

0

0

.004

.008

.02

.03

. 003

10

.026

.012

.019

.013

.013

.022

.012

.006

.019

15

. 123

.073

.081

.059

.045

.065

.081

.076

.095

Time from 1600 hours (minutes)

20

.291

.225

. 189

. 193

. 136

. 174

. 170

. 166

.250

25

.3 06

.240

.225

. 198

. 191

. 187

.216

.207

.261

30

.259

.264

.216

.232

.215

.204

. 189

.200

.240

35

. 199

. 193

. 152

. 168

. 136

. 136

. 117

. 121

. 186

40

. 102

. 105

. 112

. 103

.085

.098

.078

.072

. 104

45

.034

.047

.047

.050

. 047

.049

.050

.047

. 042

50

.007

.009

. 154

.010

.018

.023

. 018

.017

. 011

55

.007

.009

. 109

.009

.012

. 014

.013

.011

. 010

60

.001

. 003

.006

.005

.004

. 005

.005

.003

. 003

The tabulated values in the main body of the table are the precipitation depths computed

by the isohyetal method during each five minute interval.



Table 7.4. Precipitation data for event of July 29, 1966, on subwatershed 11 of the Walnut Gulch experimental

watershed.

Subzone

Number

1

2

3

4

5

6

7

8

9

5

.037

.015

.023

.019

.016

.017

.034

.035

.024

Time from

10

. 102

.053

.053

. 044

.043

.042

.047

.048

.065

15

.097

.095

.074

.091

.119

.096

. 104

.131

.090

1820

20

.046

.073

.071

.088

. 112

. 101

. 113

. 146

.069

hours (minutes)

25

.026

.038

.061

.050

.075

.074

.090

. 108

.039

30

.009

.010

.021

.013

.026

.028

.023

.027

.014

35

.001

.001

.007

.003

.011

.01

.01

.013

.003

40

.001

. 001

.004

. 000

. 001

.001

.001

.000

.000

The tabulated values in the main body of the table are the

precipitation depths computed by the isohyetal method for each five

minute interval.

so



CHAPTER VIII

RESULTS AND DISCUSSION

The mathematical model of surface runoff develop

ed in the previous chapters was applied to subwatershed

11 of the Walnut Gulch experimental watershed. The

model was fitted to the subbasin with the data from the

runoff event of July 20, 1966, and then verified with the

flow event of July 29, 1966. This chapter presents the

results of that application.

Flow Hydrographs

Figures 8.1 and 8.2 show the computed and meas

ured flow hydrographs at the outlet of subwatershed 11

for the events of July 20, and July 29,1966, respectively.

The selected criteria for goodness of fit are presented in

Table 8.1 as the percent error which is permitted on each

of the principal characteristics of the discharge hydro-

graph at the measuring flume 11. The measured and com

puted values of these characteristics are presented in Table

8.2 for the runoff event of July 20, and in Table 8.3 for

that of July 29. Tables 8.2 and 8.3 also contain the per

cent errors or percent deviations of the computed values

from the measured values. A comparison between these

percent errors and the tolerance limits set for the errors in

Table 8.1, indicates that, under the selected criteria, the

fit is good for the two outflow hydrographs obtained

from the mathematical model.

It will be observed from Figures 8.1 and 8.2 that the

measured outflow hydrographs exhibit a "tail" which is

not closely reproduced by the computed hydrographs.

The exact origin of this "tail" is not yet known, although

it is believed that part of it may have been caused by some

traces of interflow or subsurface flow. In any case, the

"tail" portions of the hydrographs are small and con

tribute less than 1 percent of the total volume of flow

under the hydro- graphs.

As can be seen from Tables 8.2 and 8.3 or from

Figures 8.1 and 8.2, the volume of runoff on July 20 was

.279 acre-feet less than that of July 29, although the vol

ume of rainfall on subwatershed 11 for July 20 exceeded

that of July 29 by 130.7 acre-feet. Some light can be shed

on that seemingly strange situation by the two following

considerations. First of all, the runoff event of July 20,

which was the first for 1966 on subwatershed 11, took

place when the subbasin was dry, and, as a result, the

retention and infiltration capacity rate functions (Equa

tions (5.4) and (5.9) respectively) assumed the maximum

values at the beginning of the storm. In contrast, on July

29 the subbasin was still wet from an event on July 28;

the two runoff producing events were separated by only 7

hours. As a consequence of the wet initial condition on

July 29, the infiltration capacity rate function assumed its

minimum value throughout the event, and the actual re

tention rate was negligible since the retention storage was

already essentially satisfied. In addition to the high loss

rate values, the spatial distribution of the storm of July 20

permitted a large opportunity time for channel seepage.

Because the rainfall was concentrated mainly on the upper

part of the subwatershed, as depicted by Table 7.3, most

of the outflowing water originated from the upper sub-

zones. The routing process involved in the solution of the

surface runoff reveals that the waters which contribute to

the major part of the runoff, had to flow through almost

the entire length of the main channels. This situation re

sulted in a long lag time, as evidenced by Figure 8.1, and a

large amount of water was lost to channel infiltration and

seepage. Only July 29, the storm was centered in the

lower part of the basin, that is, in the subzones near the

outlet. It was disclosed by the model that the flow from

the upper subzones was negligible, and the lower subzones

contributed the entire runoff. Therefore, in this instance

the outflowing water had to travel a short distance, and

only a small opportunity time for channel seepage existed.

As a result, the time lag was relatively shorter, as illus

trated in Figure 8.2, and the channel seepage losses were

much less than those of July 20.

The model also yields the flow hydrographs at each

section of the planes and of the channels. Flow hydro-

graphs recorded at successive sections are presented in

Figure 8.3 for the plane and in Figure 8.4 for the channel

of subzone 2. Because every point on the plane of a par

ticular subzone receives the same rainfall rate and shares

the same loss functions, the flow starts at the same time at

all the plane sections, but the time lag and time to peak

increase with increasing distance from the upstream end.

The picture can be different for the channel which rc-
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Figure 8.1. Outflow front subwatershed 11 for the event of July 20,1966.

Table 82. Principal outflow hydrograph characteristics

and percent error for the event of July 20,

1966.

Table 8.1. Selected criteria for goodness of fit.

Principal outflow hydro-

graph characteristics

Peak flow rate

Time to peak

Total volume of flow

Maximum % error

permitted

5%

5%

5%

Hydro-

graph

Charac

teristics

Peak flow

rate

(cfs)

Time to

peak

(minutes)

Total vol

ume of

flow

(acre-feet)

Measured

22.20

80.00

. 571

Computed

22.24

81.66

.590

Discrepancy

.04

1.66

.019

% error

. 17%

2. i re

J.OSTr
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Figure 8.2. Outflow from subwatershed 11 for the event of July 29,1966.

80 90 100 110 120

Table 8.3. Principal hydrograph characteristics and percent

error for the event of July 29, 1966.

Hydro-

graph

Charac

teristics

Peak flow

rate

(cfs)

Time to

peak

(minutes)

Total vol

ume of

flow

(acre-feet)

Measured

32. 05

35.00

. 852

Computed

32.40

36. 50

.88

Discrepancy

.35

1. 5

.028

T

% error

1. IT.

4.37.

3.5%

ceives at its upstream end section an additional input from
the above subzones. However, since the channel of sub-
zone 2 receives no water from adjacent subzones, the
channel flow hydrographs shown in Figure 8.4 exhibit the
same characteristics as those of the plane. The hydro-

graphs of Figure 8.4 were obtained for channel seepage
capacity rate values much less than those adopted for the

subwatershed, and are presented here only for illustrative

purposes. Actually there was not flow from subzone 2 as

the water was lost to channel seepage.

Important flow characteristics which can be obtain
ed from the model are the stage- and velocity-hydrographs
at each channel and plane section. Typical stage- and

velocity-hydrographs at a channel section are shown in
Figure 8.5.
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Figure 83. Overland flow hydrographs at successive
sections of the equivalent plane of subzone 2.

Figure 8.4. Channel flow hydrographs at successive
sections of the channel of subzone 2.
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Figure 8.5. Stage and velocity hydrographs at a channel section of subzone 2.
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Condition Parameters

Because of the uniformity of such factors as the

vegetal cover, the soil type, and the channel bed material

within subwatershed 11, one set of condition parameters

was assumed to apply to the overland flow, and another

set to the channel flow. The maximum and minimum in

filtration capacity rates selected for the channels were

larger than those of the planes because of the loose and

coarse channel bed material. However, a higher roughness

coefficient was assumed for the planes due to the presence

of the grass and brush on the land. The fitted values of the

condition parameters are listed in Tables 8.4 and 8.5 re

spectively for the planes and channels of subwatershed 11.

Table 8.4. Fitted values for the constants involved in the

condition parameters for the land surfaces of

subwatershed 11.

Constants

R
cs

k
r

f
m

f
o

K

K

Fitted values

0. 15 in

1.0

0.18 in/hr

1.8 in/hr

0.60

0.093 ^~

Table 85. Fitted values for the constants involved in the

condition parameters for the channels of sub

watershed 11.

Constants

f
m

f
o

kr

c

K

Fitted values

1.8 in/hr

4.2 in/hr

.04

. 10 sec"

.03 ££|i
ft

They were obtained by fitting the mathematical model lo
the runoff data of July 20, and, therefore, they depend on

the data used and the selected criteria for goodness ollii.

The evaluation of these parameters would be more ac

curate if flow data at the outlet of each subzone, and

additional information about the overland flow were avail

able. Nevertheless, the fitted values presented in Tables

8.4 and 8.5 are considered reasonably accurate, since they

were used in the model to predict the runoff of July 29

within errors which did not violate the criteria for good
ness of fit.

Check on Conservation of Mass Principle

Besides the hydrographs, the analog model provides

plots of the effective precipitation, the retention and infil
tration rates as illustrated for the plane of subzone 2 in

Figure 8.6. From those graphs, the actual amount of

water lost to infiltration and to retention storage, as well

as the volumes of water input and water output can be

computed. By making a water budget for the subzones, it

is thus possible to check how closely the principle of con

servation of mass was satisfied. The results of this check

are presented in Table 8.6 for the overland flow of sub

zone 2. Since there is no reservoir or pond on subzone 2,

at the end of the flow event the total volume of water

input, or rainfall, must be equal to the volume of runoff

plus the volume lost to retention and infiltration. Of the
7.44 acre-feet of rain introduced as input in the computer
program, an amount of 7.43 acre-feet was accounted for

in the computer outputs, resulting in an error of only 0.18
percent. A similar check was carried for the overland flow

of subzone 1 and the results are also reported in Table
8.6. In both cases the percent error is small.

Distribution of the Watershed Losses

From the histograms of rainfall input and the out
put hydrographs of overland the channel flows, the vol

umes of losses on the land surface on one hand and in the

channel network on the other can be computed. Table 8.7

gives the respective amounts of water lost to infiltration

and retention storage on the land surface and to seepage

in the channel system of subwatershed 11 for the events
on July 20 and July 29, 1966. Table 8.7 also shows that
for those storms subzone 9 was treated as blind drainage
for the reasons given in Chapter VII. It will be observed
from Table 8.7 that the losses from the storm on July 20
were much larger than those on July 29 due to the differ

ent moisture conditions which prevailed on subwatershed

11 at the onset of each storm and to the different rainfall
distribution as explained earlier in this chapter.

Solution Speed

The computer solution lime was reduced by choos
ing a time scale factor h = 1/300, that is, one machine
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Figure 8.6. Input and output data for the plane of subzone 2 used in the check on the conservation of mass principle,

July 20,1966.

Table 8.6. Check on conservation of mass principle for subzones 1 and 2 for the event of July 20,1966.

Subzone

Number

1

2

Volume of rainfall

input to program

(acre-feet)

13.00

7.44

Volumes computed from program outputs

Retention

(acre-feet)

1.92

1.04

Infiltration

(acre-feet)

5.99

2. 19

Outflow

(acre-f.eet)

5.20

4.20

Total

(acre-feet)

13. I 1

7.43

Error

(acre-feet)

0. 11

0.01

% error

0.85

0. 13
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Table 8.7. Distribution of watershed losses for the runoff events of July 20, and July 29, 1966, as computed from lla-
model inputs and outputs.

Date of

runoff

event

July 20,

1966

July 29,

1966

Losses'to infiltration and reten

tion storage on land surface

Total volume

(acre-feet)

114. 18

37.06

Volume per

sq. mi. of land

(acre-feet/mi )

42. BO

13.90

Losses to channel seepage in

channel system

Total volume

(acre-feet)

36. 14

9.86

Volume per mile

of channel

(acre-feet/mile)

4.84

1.32

:

Losses to blind drain

age (all the rainfall

on subzone 9)

Total volume

(acre-feet)

40.47

12.9

second corresponded to 300 seconds of the physical sys

tem. Although the analog computer yielded the flow

hydrographs at the downstream ends of the planes in only

a few seconds, hardware limitations prevented the outlet
of the watershed from being reached in a single program

ming operation. It was, therefore, necessary to record the

simulated hydrographs at selected points, for example at

the downstream end sections of the planes and at the

outlets of the subzones. The computer was then program

med for the adjacent downstream parts of the model and
the recorded hydrographs introduced as portions of the

input quantities. The process of transforming the recorded

hydrographs into an input form suitable to the analog

computer is a tedious task which accounts for most of the

delay experienced in solving the model. In addition, fur

ther delay was introduced because it was necessary to

manually reset many of the potentiometers for each run.

The programming shortcomings discussed in the pre

vious paragraph could be overcome by the use of a hybrid

computer in which it is possible to set the potentiometers

automatically, store the output hydrographs, and call for

them when needed. With a sufficiently large storage capa

city the hybrid computer would be capable of auomatic

iterative processes and data fitting procedures according

to a selected set of criteria for goodness of fit.

Models Based on Simplified

Unsteady Flow Equations

An attempt was made to assess the validity of some

simplifications usually made in the momentum equation.

The simplifications considered here involved neglecting

the convective acceleration 1/g 3 V2/3x and the pressure
term3y/3x.

In the case of the planes, flow depths and velocities

were so small that the inertial term, 1/g 3 V2/gx, and the
gradient of depth, 3y/3x, were insignificant and had no

effect on the overland flow hydrographs. The slopes of

the channels of subwatershed 11 are very steep, as evi

denced in Table 7.2. As a result, the slope and roughness

terms were predominant to the extent that the convective

acceleration was completely insignificant, and the gradient

of depth had a negligible effect on the channel flow
hydrograph. For the flow range involved in the two runoff

events modeled here, the results did not change when the

terms 3y/3x and 1/g 9V2/3x were dropped from the
momentum equation.

Sensitivity Analysis

Subzone 2 of subwatershed 11 was selected for the
study of the effect of condition parameter changes on the

shape of the overland and channel flow hydrographs. The

procedure used in this analysis consists in varying one

parameter while keeping the others constant.

Overland flow hydrograph

The responses of the overland flow model for sub

zone 2 to changes in the plane condtions parameters are

shown in Figures 8.7 to 8.12. Plots illustrating the varia

tion of the flow hydrograph with changes in Rcs and
kr are given in Figures 8.7 and 8.8 respectively. For the
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same retention storage capacity, and amount of water lost

to retention storage increases with decreasing kr values.

The effect of the plane roughness coefficient K on the

flow hydrograph is presented in Figure 8.9. Variation of K

affects particularly the peak and the duration of flow, but

does not change the time of rise. An increase in the K

value results in a decrease in the flow volume because the

flow velocity is reduced and infiltration opportunity time

is thereby increased. Figure 8.10 and 8.11 indicate that,

for kf - 0.60, all the characteristics of the hydrograph are

significantly affected by changes in fm , while they experi

ence little alteration when the value f„ is modified. How

ever, this is not the case for low values of kf, and whether

or not variation of fm affects the hydrograph more than

variation of f0, depends on the value of kf. Figure 8.12

shows an increased amount of infiltration loss with de

creasing values of kf, and, therefore, suggests that the

maximum infiltration capacity rate fo plays an important

role when the time constant kf is small, while the mini

mum infiltration capacity rate fm is predominant for large

values of kr.

Values of k

1.0

R . = • 15 in

10 20 30 50 60 70 SO
Tfcsc In Minutes

90 100 110

10 20 10 40 30 60 70 80 90 100 110

Figure 8.8. Overland flow hydrograph for subzone 2 as

affected by changes in the time constant of

the retention capacity rate function, kr, July

20,1966.

Figure 8.7. Overland flow hydrograph for the subzone 2

as affected by changes in the retention storage

capacity, R^-, July 20,1966.

Figure 8.9. Overland flow hydrograph for subzone 2 as

affected by changes in the plane roughness

coefficient, K, July 20,1966.
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Figure 8.12. Overland flow hydrograph for subzone 2 as
affected by changes in the plane time con-
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Channel flow hydrograph

The channel flow hydrograph can be affected by

changes in all the condition parameters within the model.
For the channel of subzone 2, the responses of the hydro-

graph to changes in the plane condition parameters are

illustrated in Figures 8.13 to 8.18, whereas Figure 8.19 to
8.23 present the responses when the channel condition
parameters are modified. The effects of the retention

terms Rcs and kr are given in Figures 8.13 and 8.14 re

spectively. The time at which the flow ceases is almost

invariant with changes in RB for overland flow (see Fig
ure 8.7), while for channel flow it varies significantly

when Rps is changed (see Figure 8.13). The manner in

which the channel flow model responds to changes in

plane and channel roughness coefficients respectively is
indicated in Figures 8.15 and 8.23. The chief difference
between the effects of those two coefficients on the
hydrograph is that for the range of values tested, the chan
nel K has no effect on the rise time of the hydrograph,

whereas, the plane K affects it significantly. The influence
of the constant applied to channel seepage on the hydro-
graph shape is seen in Figure 8.22. Changes in c alter the

volume, peak, and duration of flow, but leave the hydro-
graph rise time unchanged. Figures 8.16 to 8.21 empha

size again the role of kf in determining the relative weight

carried by fm and f0 in the infiltration capacity function

and their influence on the flow hydrograph. The plots of
Figures 8.16 and 8.17 were obtained for a plane kf value
of 0.60, while those of figures 8.19 and 8.20 had a chan
nel kf value of 0.10. These plots show that the hydro-

graph was more sensitive to changes in the plane f than

to changes in the channel fro,and also more sensitive to
variation of channel f0 than to variation of olane f Th
relative magnitude of the difference between f an°d f

Valuei of k

0 10 JO 30 40 SO (0 70 SO 90 100

Figure 8.14. Channel flow hydrograph for subzone 2 as

affected by changes in the time constant of

the retention capacity rate function, k
July 20,1966.

!
Values of R

c

ir. inches

10 20 30 40 SO 60 70 SO 90

Tine in Minutes

30 40 50 60 70 80

TIro In Hlnutet

Figure 8.13. Channel flow hydrograph for subzone 2 as Figure 8.15. Channel flow hydrograph for subzone 2 as
affected by changes in the retention storage affected by changes in the plane roughness
capacity, R^ .July 20,1966. coefficient, K, July 20,1966
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establishes the sensitivity of the model to changes in kf •
the larger the difference the more sensitive is the hydro-
graph to variation in kf. This is illustrated in Figures 8 18
and 8.21 which show that the hydrograph was more sensi

tive to changes in the plane kf than to variation in the
channel kf, because the difference between f and f was
1.68 m/hr for the plane and only 1.2 in/hr for ^"chan
nel.

plane I • 1.8 in. /hr.

plane k° • 0. 60

Value, a! plane {

In In./hr.

so

Tin In Hlnuten

Figure 8.16. Channel flow hydrograph for subzone 2 as
affected by changes in the plane minimum
infiltration capacity rate, f July 20,1966.

10 20 " « jo isJ
TI» In Mlnuto.

90 100

Figure 8.18. Channel flow hydrograph for subzone 2 as
affected by changes in the plane infiltration
time constant, kf, July 20,1966.
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° id >o :o to >o to i
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Figure 8.17. Channel flow hydrograph for subzone 2 as Figure 8.19. Channel flow hydrograph for subzone 2
affected by changes in the plane maximum affected b hL X l
in^l e. ,. ,uly «. „« Sf^^
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Figure 8.20. Channel flow hydrograph for subzone 2 as
affected by changes in the channel
maximum infiltration capacity rate f Julv
20,1966. 0> '

Figure 8.22. Channel flow hydrograph for subzone 2 as
affected by changes in the constant applied
to the computation of channel seepage c
July 20,1966. S '

Values of channel k.
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Figure 8.21. Channel flow hydrograph for subzone 2 as
affected by changes in the channel infiltra
tion time constant, kf, July 20,1966.

Figure 8.23. Channel flow hydrograph for subzone 2 as
affected by changes in the channel roughness
coefficient, K, July 20, 1966.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The numerical solution of the unsteady flow equa
tions, together with the presentation and discussion of
results from the mathematical model of surface runoff
suggest the following conclusions:

1.

3.

4.

6.

The numerical solution of the full unsteady
flow equations is feasible on the analog com
puter.

The perturbation method presented for the
stability study of the differential-difference
systems is adequate since the stability condi

tions derived from its application agree with
the restrictions generally set on flow compu
tations according to the flow regime. In addi

tion, no instabilities appeared in the analog

computer solution of the implicit differential-

difference system as predicted by the pertur
bation method.

The solution of the implicit differential-
difference system was found to be always
stable, and there was no restriction on the size
of the channel section, Ax, which can be used.
In the application of the mathematical model,
space derivatives in the momentum equation
were negligible. Thus, truncation errors from

this equation were not significant. Further
more, the small error encountered in the

application of the conservation of mass princi
ple tends to indicate that the machine errors
do not make the analog solution prohibitive.
Because the pressure-distribution coefficient,
the energy coefficient, and the momentum
applied only to the negligible space derivatives
in the momentum equation, the assumption
of a value of unity for these coefficients did
not introduce serious errors.

For the range of flow and slopes considered in

the application of the mathematical model,

neglecting the local acceleration and the gradi

ent of depth does not change the results.

The consideration of both the overland and
channel flow in the surface runoff model

allows the computation of the volume of

8.

9.

10.

11.

water loss to infiltration and retention storage

on the land surfaces, and the determination of
the channel seepage losses.

The subdivision of the drainage basin into sub-
zones helps in reproducing the spatial distribu
tion of the precipitation and of the model
parameters. Subdivision also provides addi

tional opportunity for improved fitting of the
model to the watershed if measured flow
hydrographs are available at the outlet of the
subzones.

The runoff hydrograph predicted from the
regulated model shows satisfactory agreement
with the measured hydrograph under the
selected set of criteria for goodness of fit.
The mathematical model of the surface runoff
is flexible, and can be adapted to different
flow conditions found on a watershed. It also
presents the advantage of yielding directly
such hydrograph characteristics as the time to
peak and the rise time without resorting to
empirical formulas for the time delay.

The results of the sensitivity analysis, that is,
the responses of the hydrograph to changes in
parameters, agree with what might be ex

pected from field observations.

It is believed that the overall objective of the study
which was to improve analog computer models of surface
runoff with particular emphasis on the model developed
by Riley (Ri]ey> 1967, Riley et al. 1967) has been
achieved. A brief comparison of the main features of the
study with those of Riley's model will permit to assess
ment of improvement achieved by the study.

The chief difference between the surface runoff
model described here and that developed by Riley lies in
the mathematical expressions on which the models are
based In Riley's model the space derivatives were drop-
ped from the continuity and momentum equations As a
result, Riley's model could not follow the flowing water
en route to the basin outlet, and did not account for the
time delay of the outflow hydrograph. Therefore Riley
found it necessary to introduce a mechanical time delay in
order to reproduce such hydrograph characteristics as the
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time to peak and the rise time. In the model developed

here, the presence of the space variable in the mathemati- 4.
cal equations of flow allows the model to route the flow

over the land surface and in the channel system. This flow

routing accounted for the time delay observed in the out

flow hydrograph (see Figure 8.1 and 8.2), and the model

was sufficient to properly simulate the hydrograph char

acteristics. In addition, Riley considered the watershed as

one unit with uniform input and physical characteristics, 5.

whereas the model described herein subzones the water

shed to account for the spatial distribution of the rainfall
and of the watershed parameters.

Suggestions for Further Research

Several suggestions are given below for further im
provement and as extensions of this study.

1. The possibility of using the capability of the

hybrid computer to handle automatic iterative
processes and data adjustment procedures in

view of obtaining the watershed outflow

hydrograph in a single programming operation
is worth investigating. It is believed that the 7.

computing time will be reduced by solving the

differential-difference equations on a hybrid
computer. g

2. Studies should be devoted to the numerical
evaluation of the errors involved in the com
puter solution of the unsteady flow equations. 9.

This study may also aim at substantiating or
refuting the speculation that computing errors
make analog computer solutions of partial 10.
differential equations prohibitive.

3. Investigations should be extended to the

"tail" exhibited by the measured outflow

hydrographs.

It may be of interest to apply the model to a

much larger range of flows, and to several

watersheds displaying a wide range of land

and channel slopes. This study may be used to

determine the conditions under which certain
terms in the momentum equation can be neg
lected.

It would also be useful to apply this study to

the determination of the relations between

soil moisture and the capacity rates of infiltra

tion and retention. A significant improvement

would be achieved by the addition of such

relations to the present model.

Attempts should be made to combine the

model developed here with mathematical'

expressions describing the scouring of the

channel bed and the transport of the sediment

material in terms of the flow depth and velo

city. By solving the unsteady flow equations

and the sediment equations simultaneously,

the runoff as well as the sediment load could
be obtained.

It would be interesting to extend the analog

computer solution of the unsteady flow equa

tions to water hammer problems in conduits.

The consequences of neglecting lateral inflow
and outflow in the momentum equation
should be investigated.

It would be useful to assess the effect of the

size of the channel section, £x, on the analog

solution of the differential-difference system.
Studies should aim at developing improved
expressions for the slope of the energy line in

the case of unsteady flow and natural chan
nels.
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