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1. Introduction

Land surface model parameter estimation can be performed using soil moisture information provided by
synthetic aperture radar imagery. The presence of speckle necessitates aggregating backscatter measure-
ments over large (>100 mx 100 m) land areas in order to derive reliable soil moisture information from
imagery, and a model calibrated to such aggregated information can only provide estimates of soil moisture
at spatial resolutions required for reliable speckle accounting. A method utilizing the likelihood formulation
of a probabilistic speckle model as the calibration objective function is proposed which will allow for
calibrating land surface models directly to radar backscatter intensity measurements in a way which
simultaneously accounts for model parameter- and speckle-induced uncertainty. The method is demon-
strated using the NOAH land surface model and Advanced Integral Equation Method (AIEM) backscatter
model calibrated to SAR imagery of an area in the Southwestern United States, and validated against in situ
soil moisture measurements. At spatial resolutions finer than 100 mx 100 m NOAH and AIEM calibrated
using the proposed radar intensity likelihood parameter estimation algorithm predict surface level soil
moisture to within 4% volumetric water content 95% of the time, which is an improvement over a 95%
prediction confidence of 10% volumetric water content by the same models calibrated directly to soil
moisture information derived from synthetic aperture radar imagery at the same scales. Results suggest that
much of this improvement is due to increased ability to simultaneously estimate NOAH parameters and
AIEM surface roughness parameters.

© 2010 Elsevier Inc. All rights reserved.

large areas; radar can penetrate the land surface to a depth dependent
on wavelength, and SAR imagery can be obtained at spatial

A standardized target set of accuracy and precision requirements
governing the reporting of soil moisture distribution for watershed-
scale applications is outlined by Moran et al. (2004 ). Such information
would optimally be available at a fine spatial resolution of between 10
and 100 m, with coverage areas at the watershed scale or larger.
Because many management decisions are made on a day-to-day basis,
product delivery requirements are stringent and delivery would
optimally be available immediately upon request.

Difficulties arise in using field-based measurements of soil
moisture to meet these requirements since soil water distributions
are highly heterogeneous in nature (Mohanty et al., 2002) and field
measurements offer only single-point information. Alternatively,
satellite-based synthetic aperture radar (SAR) observation systems
can be used to make soil moisture measurements continuously over
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resolutions finer than soil moisture product requirements. The
sensitivity of radar backscatter signal to soil moisture is due to the
difference in permittivity, or dielectric constant, of dry and wet soils
(Ulaby, 1974; Dobson et al., 1985), thus moisture information
contained in the radar signal is limited by the depth of surface
penetration and confined to the top few centimeters of soil (Nolan &
Fatland, 2003). Additionally, the potential for SAR imagery to provide
soil moisture information at the required spatial resolution is
hampered by the presence of speckle, which is not affected by soil
water content. Typically accounting for speckle is done statistically
through a multilook process by spatially aggregating SAR image pixels
over a homogeneous area (Oliver & Quegan, 1998 pp 28-29). In order
to extract reliable soil moisture information from a SAR image, it is
necessary to aggregate backscatter measurements over areas large
enough to compromise the ability of the imagery to provide a soil
moisture information product with the required spatial resolution
(Thoma et al., 2008). Also, because of infrequent revisit coverage by
high resolution satellite SAR systems (on the order of a few days to
weeks), imagery fails to provide the continuous coverage needed to
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track short-term soil moisture behavior and cannot deliver up-to-date
information between satellite overpasses.

While SAR imagery can provide instantaneous measurements of
surface level soil moisture, hydrologic land surface models (LSMs) are
able to provide continuous soil moisture time series with accuracies that
are largely dependent on appropriate parameterization. It is reasonable
to assume that a LSM parameterized so that predictions of soil moisture
closely match the available SAR image estimations will also be able to
reasonably predict soil moisture behavior between available imagery.
The idea of parameterizing a LSM using system observations has been
studied extensively in general (e.g. Johnston & Pilgrim, 1976; Sorooshian
& Gupta, 1985; Yapo et al.,, 1998; Liu & Gupta, 2007) and with specific
regard to soil moisture prediction (e.g. Burke et al., 1997; Feddes et al.,
1993; Mertens et al., 2006; Santanello et al., 2007; Ines & Mohanty, 2008,
2009; Peters-Lidard et al., 2008; Pauwels et al., 2009). In addition, it has
been suggested that it may be possible to use models calibrated to
surface level soil moisture information to retrieve reliable sub-surface
information (Calvet & Noilhan, 2000).

Calibrating a model to system observations involves the minimization
of a measure of disagreement between the modeled time series and the
observed state — in this case soil moisture content. An objective function
will have the general form

Y =f(0,2), )

where 7y is an aggregate measure of disagreement characterized by
the relationship f(*) between modeled (output) values at all of T time
steps, 0={04, 02, ..., o7}, and system observations at corresponding
time steps, Z={zy, zo, ..., zr}. Recognizing that O is functionally
dependent on the R model parameters, ©={6y, 65, ..., 6z}, and the
model forcing data, F = {t4, L,..., g} at K> T time steps, according to the
model structural equations, M(*),

0 = M(F,0), 2)

Eq. (1) can be characterized as

Y =f(M(F,0),Z) = fu(F,0,2) = furz(©) 3)

where fy(*) is obtained by considering M(*) constant, and fy;rz(*)
further depends on the assumption that the forcing and observation
data are known and independent of the model. Thus, disagreement
(y) is minimized by adjusting model parameter values. An objective
function should characterize a relationship which is related to
agreement between modeled predictions and system observations;
the choice of the definition of agreement and the choice of objective
function are often subjective and application dependent (Diskin &
Simon, 1977). Often the mean-squared-error (MSE) between mod-
eled and observed data is used and agreement is maximized when the
objective function has a minimum value.

Once disagreement is minimized by adjusting model parameters,
the set of estimated parameters can be used to produce continuous
model output which, assuming accurate model structure, forcing data
and observations, can be taken as a reliable representation of the
system. The output of the calibrated LSM will be continuous at the
temporal resolution of the forcing data and has the potential for
modeling soil water behavior. However, behavior of the system at
spatial scales smaller than the observations cannot be distinguished
by this procedure and calibrated model output will be limited to the
spatial resolution of the observations. Therefore, a distributed LSM
calibrated using multilook-derived soil moisture measurements will
have the potential to produce a soil moisture map that meets
temporal and spatial coverage requirements but not the spatial
resolution requirement. The objective of this work is to develop an
alternative technique for merging SAR imagery with LSMs through
parameter estimation which will increase the reliability of calibrated-

model soil moisture predictions at spatial resolutions fine enough to
meet product requirements.

2. Models, study site, and methods

The alternative proposed here involves directly comparing SAR
backscatter intensity to that provided by an LSM outputting a
theoretical backscatter intensity time series dependent on system
parameters and surface level soil moisture (similar to Burke et al.,
1997). A LSM is constructed to report theoretical non-speckled radar
backscatter intensity values and a likelihood relationship between
these pure information values and speckle-affected real SAR intensity
images is used as the objective function. The result of this calibration
procedure is a maximally-likely modeled soil moisture time series
considering parameter uncertainty and speckle uncertainty. In this
manuscript the technique is presented and demonstrated 1) with sets
of artificial, model-produced soil moisture data and simulated
speckled SAR imagery to show that the theory is sound in the absence
of model error and 2) with SAR imagery of a sparsely vegetated area in
the Southwestern United States. The results of the real imagery
demonstration are validated against in-situ soil moisture measure-
ments. Performance is compared to that of a model calibrated to in-
situ data in order to assess the effects of observation data noise on the
procedure, and to models calibrated with soil moisture derived from
individual SAR images using a multilook technique in order to assess
any improvement offered by the likelihood approach.

2.1. The advanced integral equation backscatter model

Radar backscatter, as measured by SAR satellites, is mostly
dependent on four land surface characteristics: topography, surface
roughness, soil moisture and vegetation. In order to accurately model
a backscatter intensity signal all of these factors must be accounted for
along with instrument properties and viewing geometry. One of the
most widely used theoretical representations of a radar backscatter
signal from bare soils is the integral equation method (IEM; Fung et
al., 1992) which accounts for all of the relevant parameters except
topography. For this study the landscape is considered flat. The [EM
requires two surface roughness parameters — root mean squared
surface height (h,;s [cm]), which is defined for an N-point discrete
surface profile with surface heights z; as

o= (828 = () =)

and correlation length (C; [cm]), which describes the relative spatial
dependence of roughness; in this case an exponential autocorrelation
function is used. In addition, the IEM requires viewing angle, radar
signal frequency (in part used to scale surface roughness parameters
with respect to wavelength), and the soil dielectric constant.
Assuming that the sand and clay fractions of the soil are known the
dielectric constant, ¢ C, can be approximated as a function of soil
moisture in terms of volumetric water content (VWC) using the
Hallikainen et al. (1985) polynomial expressions (HPE):

g = (1.993 + 0.002%S + 0.015%C)
+ (38.086 — 0.176 x S—0.633  C) x ,
+ (10.72 4 1.256 %S + 1.522 % C) * >

€m = (—0.123 + 0.002 % S + 0.003 « C)
+ (7.502—0.058 + S—0.116 + C) * ,
+ (2.942 + 0.452 S + 0.543 « C) * ¢

Where ¢, is volumetric water content of the soil, S is the sand
fraction (%) and C is the clay fraction (%).
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The advanced version of the [EM (AIEM) is used here and improves
on theoretical results of the IEM in general, and especially over
rougher surfaces (Chen et al., 2003). Performance is highly sensitive to
the surface roughness parameterization (Fig. 1) (Altese et al., 1996;
Bryant et al., 2007); it is essential to use parameter values which well-
represent the imaged area (Fung et al., 1996). Many efforts have been
made to measure and parameterize surface roughness. Both ground-
based (e.g. Podmore & Huggins, 1981; Baghdadi et al., 2000; Mattia et
al., 2003; Oelze et al., 2003; Bryant et al., 2007; Oh & Hong, 2007) and
satellite-based methods (e.g. Baghdadi et al., 2002a,b; Zribi &
Dechambre, 2003; Rahman et al., 2008) have been proposed, however
in general it is not possible to visit every location where soil moisture
estimates are needed and satellite-based methods are necessary. A
comprehensive discussion of problems related to modeled backscat-
ter dependency on surface roughness parameterization is given by
Verhoest et al. (2008).

In addition to what can be modeled using the AIEM, SAR
backscatter is affected by constructive and destructive interference
of signal from discrete scatterers within a given pixel which manifests
in imagery as speckle and can be modeled in a probabilistic fashion
(Goodman, 1975). If all of the non-speckle related parameters
including VWC are known and backscatter is modeled, disregarding
any model error, the difference between this modeled behavior and
SAR imagery can be attributed to speckle. However, if a given set of
parameters is not known and many samples (images of a static,
homogeneous area) are available, then the probabilistic speckle model
can be used to find maximum likelihood estimators of the unknown
parameters. This is a very useful and often employed technique for de-
speckling SAR imagery (Oliver & Quegan, 1998 p. 162), and is a form of
multilooking because it assumes homogeneity over a given area.
Because soil moisture cannot generally be considered constant
between satellite overpasses, the homogeneity requirement would
preclude sampling from sequential images of a land surface area. Thus,
the sample set used in this sort of parameter estimation procedure is
necessarily comprised of pixels from a single overpass image
representing an area which is assumed to be homogeneous in soil
moisture content, surface roughness, topography and vegetation.

By estimating the AIEM parameters relevant to each of several SAR
images of a given land surface area from different overpass times a
maximally-likely soil moisture time series can be found as long as an
adequate homogeneous area is imaged during each overpass. If there
is no correlation between members of the soil moisture time series,
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then the required number of samples from each overpass image — or
equivalently, the size of the area to be considered homogeneous — is
equal to that required in the single image case. If, however, there is
correlation between soil moisture at different times in the series then
this can be exploited to reduce the number of independent samples
needed to derive a maximally-likely estimate of the soil moisture time
series.

2.2. The NOAH land surface model

Correlation between soil moisture values at different times can be
described by a soil moisture model which accounts for earth processes
affecting water exchange in the soil. Soil moisture models take many
forms with varying levels of complexity and have been designed for
many purposes. The NOAH community land surface model, which at its
core contains a soil moisture accounting scheme, is a reliable land
surface hydrology model (Mahrt & Pan, 1984; Ek et al, 2003)
functioning as a 1-dimensional soil column simulator. NOAH optimally
accepts sub-hourly forcing data in the form of atmospheric conditions
including precipitation, and returns an array of flux and state variable
time series including volumetric water content.

The NOAH structure used in this study has six vegetation
parameters, four soil texture parameters, one topographic slope
parameter, a number of soil layers to be simulated along with the
depths of each, and a monthly green vegetation fraction (GVF;
Gutman & Ignatov, 1998) vector. Soil, and vegetation parameters
(Table 1) are considered not known and estimated using an automatic
calibration method. For this study, the number of soil layers is held
constant at four with depths of (from top down) 0.05 m, 0.25 m, 0.6 m
and 1.0 m for a combined depth of 1.9 m. Satellite-derived GVF data is
made available by the NOAA STAR long term greenness fraction
database (Jiang et al., 2009).

NOAH requires initial states in the form of average soil moisture and
soil temperature for all modeled soil layers as well as temperature of
the soil surface, snow depth and snow water equivalent, and canopy
water content. Improper initialization of model states can significantly
bias seasonal model output (Koster et al., 2004). Rodell et al. (2005)
suggests a method, which is used here, for initializing land surface
models. Forcing data spanning eight years (described below) and
NOAH parameters considered default parameters (Table 1, column 3;
Hogue et al., 2005) are available for implementing this initialization
procedure to include a 446 day spin-up period and to subsequently
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Fig. 1. AIEM (coupled with HPE) modeled HH backscatter (o°; decibels) response to varying (left) soil volumetric water content (VWC) and root-mean-squared surface roughness
height (h,s) where the two contour surfaces represent C; values of 1.25 cm [top] and 0.76 cm [bottom]. Backscatter response (right) to VWC and surface roughness correlation
length (C;) where the two contour surfaces represent h,.;s values used in artificial and real data calibrations h,,s = 1.48 cm, h;,,,s = 0.57 cm respectively. The behavior of VV response

is similar, with a notable difference being a positive response shift with constant h,s, C;.
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Table 1
NOAH parameterization, initialization parameter values and calibration intervals.

2567

Parameter name Description

NOAH initialization value Lower bound Upper bound

smcmax Maximum soil moisture content (m>/m>)

psisat Soil saturated potential

dksat Saturated hydraulic conductivity (m/s)

bexp Infiltration rate parameter

nroot Number of soil layers containing vegetation roots

rsmin Minimum stomatal resistance (m)

rgl Canopy resistance/solar radiation parameter

hs Canopy resistance/vapor pressure deficit parameter (s/m)
z0 NOAH surface roughness correlation length (m)

lai Leaf-area index

0.42 0.05 0.66
0.62 0.04 0.62
1.41e—5 5e—7 3e—4
4.26 291 10.8
3 0 4

100 40 1000
100 30 150
42 36.35 55)
0.011 0.01 0.99
4 0.05 6

begin simulation on May 30th, 2004. Soil moisture evolution is
modeled over a period of 99 days through September 6th and
calibration statistics consider model performance over this period.
2.3. The likelihood speckle model

The exponential speckle model defined by

P(I|o) = % X exp(%’) (6)
I=0xn (7)
P(n) = exp(—n) 8)

where I is measured backscatter intensity (unitless), o is mean, or
‘non-speckled’, intensity, and n (unitless) is the speckle contribution
is a theoretically based stochastic description of speckle effects over a
static and homogeneous distributed target. The number of discrete
scatterers within a resolution cell and the effect of each scatterer on
the intensity of the backscatter signal are random variables (Good-
man, 1975; Oliver & Quegan, 1998 pp. 96). Since soil moisture changes
rapidly compared to repeat satellite overpasses, the information
carrying term, o becomes time dependent and Eq. (6) is more
accurately expressed as

P(l,|0,) = Olt x exp(if). 9)

O¢

However, because this model holds for all oand I related by Eq. (7)
and n according to Eq. (8), and assuming that all observations are
independently speckled, then for Timages of a homogenous area each
consisting of q pixels, 3 ={0{1 <t<T}, I={l;[]1<j<q, 1<t<T}, and

oxn= i f (3)ow(3)

Eq. (10) functions as a relative likelihood estimator for a given
non-speckled backscatter intensity time series 3 = {0} given speck-
led observations I'={I;}. Since the AIEM (by way of HPE) can produce
theoretical non-speckled backscatter intensities based on surface
parameters and soil moisture and SAR imagery provides intensity
observations, Eq. (10) will give the relative likelihood of any soil
moisture time series provided a set of SAR images as long as AIEM
parameters are known.

(10)

2.4. Calibration methods

Objective function minimization can be achieved using Shuffled
Complex Evolution (SCE-UA; Duan et al., 1992, 1993). In order for
such a search algorithm to work within a finite time frame, it is
necessary to designate the parameter space by prescribing limits on

allowable parameter values. Reasonable NOAH parameters are given
by Hogue et al. (2005) (Table 1, columns 4 and 5), and the valid range
for IEM surface roughness parameters is h,ms<% where A is the
wavelength (Su et al., 1997; Baghdadi & Zribi, 2006).

2.4.1. Multilook calibration (control)

Multilook methods for calibrating an LSM to SAR imagery require
estimating a soil moisture time series over a given land area from
imagery, and subsequently calibrating LSM parameters by comparing
modeled and derived soil moisture estimates (e.g. Santanello et al.,
2007). The AIEM and HPE can be inverted to estimate VWC from
imagery by creating a look-up table indexed by mean backscatter
intensity. NOAH parameters are estimated by reducing a MSE
objective function between these image-derived values, and model
output resulting in a calibrated soil moisture time series (Fig. 2a).
Because soil moisture must be directly estimated from imagery using
the AIEM model it is necessary to know values for the surface
roughness parameters h,,,,s and C;. These parameters can be estimated
along with NOAH parameters by creating a new AIEM look-up table
during each SCE-UA search iteration. Calibration then involves
evaluation of an objective function comparing two modeled values,
both dependent on flexible parameters. Results of implementing this
algorithm are presented later, however a subjective analysis of the
objective function space relative to important NOAH and AIEM
parameters, for instance variable along the h,,;s and maximum VWC
(smcmax) parameter dimensions (Fig. 3a), reveals that this search is a
somewhat of an ill-posed problem. Alternatively, surface roughness
parameters can be inferred from imagery and assigned a priori. When
using such parameterizations to estimate soil moisture with the AIEM
it is necessary to assume that a single soil moisture value and single
surface roughness values represent a multi-pixel homogenous area.
Backscatter intensity is averaged over the given pixels to account for
speckle and h;,s and C; values are inferred using the method of
Rahman et al. (2008). When this is done the LSM model output is
compared to the multilook-derived representative value using a MSE
objective function.

2.4.2. Likelihood calibration (experimental)

The NOAH land surface model will report a soil moisture time
series, @ ={¢|Vt}, according to a supplied set of land surface
parameters (0), which can then be translated into modeled
backscatter estimates 3 = {0¢|Vt} using the AIEM and HPE. Parameters
for the NOAH and AIEM models can be estimated simultaneously
using Eq. (10) as the objective function noting that model parameters
map uniquely to soil moisture in NOAH and soil moisture maps
uniquely (given a parameter set) to backscatter through the AIEM.
Effectively, the NOAH, HPE and AIEM model implemented in series
can be thought of as a single LSM outputting theoretical non-speckled
backscatter operating on a shared parameter set (Fig. 2b). This
formulation allows AIEM surface roughness parameters to be
calibrated in batch with NOAH LSM parameters using an objective



2568 G.S. Nearing et al. / Remote Sensing of Environment 114 (2010) 2564-2574

Soil Moisture (a)

NOAH

AIEM
Parameters
Speckle Accounting — AIEM
(Multilooking)

NOAH E Adjust Parameters
Parameters
6\

—>

(Modeled)

Soil Moisture
{Modeled)

Soil Moisture
{Calibration Data)

AlEM

1

Land Surface
Parameters

—_— Intensity
(Modeled)

E Adjust Parameters

(b)

v

Obj. Fun
Minimized?

es {Modeled)

— Soil Moisture /

-

Fig. 2. Flowchart of (a) the multilook calibration algorithm with option to estimate AIEM parameters, and (b) the likelihood calibration algorithm with estimated AIEM parameters.

function which compares modeled to observed values, resulting in
objective function space which is less noisy than that of the similar
multilook MSE calibration method (Fig. 3b).

Maximizing the likelihood measure expressed by Eq. (10) is done
by minimizing the negative of the log likelihood objective function,

In(LM(©)[ 1) = In(L(|D)e 3 3 ‘“((%) exp(i»., (1)

t=1j=1 C O
with respect to model parameters (O).
2.5. Study site and SAR imagery

Model simulations are conducted using forcing data from the Walnut
Gulch Experimental Watershed (WGEW) in southeastern Arizona. The
Kendall observation site (latitude: 31.7365, longitude: —109.9419) is
instrumented with a micro-meteorological flux station which provides
the atmospheric measurements needed to run NOAH at 20-minute time
steps. In addition, Stevens Hydra-Probe dielectric soil moisture sensors
located at 5, 15, and 30 cm below the soil surface provide accurate in situ

soil moisture information recorded at the same time intervals as the
atmospheric data. The history of instrumentation (Keefer et al., 2008)
provides enough forcing data to initialize the land surface model.
Historical data records for the WGEW are made available through the
USDA-ARS Southwest Watershed Research Center's data access project
(Nichols & Anson, 2008).

Current with SAR images, land cover at the site is characterized by
15-50% bare soil, 15-55% rock, 20-45% litter and 5-15% plant crown
(Skirvin et al., 2008). It has been demonstrated that this amount of
vegetation at the site does not significantly affect SAR retrieval of soil
moisture information (Moran et al., 2000). The soil is a gravelly
sandy-loam mixture (Osterkamp, 2008) which dries out quickly in
the absence of precipitation.

Much of the average 312 mm of annual precipitation at the WGEW
occurs as part of the summer monsoons in July and August with a smaller
but significant portion occurring during the winter months of December
through March (Goodrich et al., 2008). It is quite common for the soil to
reach a desiccated state during the dry summer months of April, May and
June further negating any effects of poor model initialization when a
model spin-up period includes the summer months.
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Fig. 3. (a) Multilook MSE and (b) likelihood objective function space topographies
considering NOAH maximum volumetric water content (smcmax) and AIEM surface
roughness root mean square height (h,y). The black marker represents the minimum
objective function value found using a grid search.

Images providing calibration observations were taken by the
European Space Agency's ENVISAT-ASAR (ENVIronment SATellite —
Advanced Synthetic Aperture Radar) instrument and the Canadian
Space Agency's Radarsat, both operating in the C band (5.6 GHz).
Three ENVISAT and three Radarsat images are used spanning the dates
of June 9th, 2004 to Aug 16th, 2004 (Table 2). The images are obtained
with three looks and have a square pixel size of 12.5x12.5 m. The
ENVISAT images are VV polarized and the Radarsat images are HH
polarized. This image set has information about both dry and wet soil
moisture periods and thus provides relatively good model calibration
information given the inherent limitation on collection frequency (see
Sorooshian et al., 1983).

2.6. Simulated data tests

Parameter uncertainty, model structural error, and observation
error contribute to uncertainty in model simulations. Calibration
procedures, in general, attempt to account for model parameter
uncertainty, and it is important to understand the effects of other
potential sources. To this end parameters are first calibrated using
simulated imagery in a way which eliminates effects of both NOAH
and AIEM structural error on the modeled soil moisture output. A
NOAH soil moisture time series considered the true state, created
using a known land surface parameter set and measured atmospheric
forcing data, is used to generate 7 x 7 pixel simulated SAR backscatter
intensity images by assigning values to AIEM surface roughness
parameters and using the HPE and AIEM to convert the simulated soil
moisture to backscatter intensity. Surface roughness parameters
values of h;;s=1.48 cm and C;=1.25cm used for this procedure
are chosen using the SCE-UA to minimize the MSE between measured
and modeled backscatter assuming that NOAH VWC time series
calibrated to in situ measurements is correct. These values represent
our best guess as to the surface roughness characterization which will
elicit optimal behavior in the AIEM over this area according to the real
SAR imagery which is available. Speckle is simulated by adding noise
according to Egs. (7) and (8). NOAH parameters (and in some cases
AIEM h;ns and Cp) are then back-estimated by employing the
likelihood and multilook calibration methods.

When surface roughness is assumed a priori, h;.,,s and C; are chosen
to be the actual values used to create the simulated imagery with the
addition of simulated measurement error as a percentage of the true
value ranging from 0 to 20%. Different measurement techniques
(instrument, transect length, algorithm, etc.) for determining h;,,s and
C; can result in different parameter values (Mattia et al., 2003; Bryant et
al., 2007; Rahman et al., 2008) such that, often, measurements are not
useable for accurate soil moisture inversion. The effect of this simulated
measurement error is demonstrated using a series of 10 simulated
images as system observations. Alternatively, surface roughness is
calibrated along with NOAH parameters. Both procedures, one assuming
a priori surface roughness parameters and the other attempting to
calibrate them, are performed using the multilook and likelihood
approaches with identical sets of simulated imagery as observations.

2.7. Real data tests

Secondly, NOAH is calibrated using in situ measurements of soil
moisture and validated against the observation data set, a procedure
which will be influenced by model structural errors but not as
significantly by system observation errors since the observation data
are also the validation data and are assumed to represent the true soil
moisture states. Similarly, parameter estimation using the portion of
the in situ data corresponding to SAR overpass times demonstrates
the maximum potential for using a sparse soil moisture observation
set, such as one derived from satellite imagery, in absence of speckle
or AIEM uncertainty.

Finally, the proposed likelihood method is applied to estimate
NOAH and AIEM parameters using SAR imagery and validated against
the in situ data set. The performance of this procedure is compared to

Table 2
SAR image parameters.
Date Time Instrument Pixel dimension Incidence angle Wavelength Polarization
June 9 10:16 ENVISAT 125m 41.08° 5.6 cm ‘'A%
July 14 10:16 ENVISAT 12.5m 41.08° 5.6 cm 'A%
Aug 2 10:16 ENVISAT 125 m 37.39° 5.6 cm 'A%
Aug 6 18:20 RADARSAT 125m 35.93° 5.6 cm HH
Aug 16 18:20 RADARSAT 12.5m 46.48° 5.6 cm HH
Aug 20 18:20 RADARSAT 125 m 46.48° 5.6 cm HH
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that of the multilook procedures with MSE objective functions, again
assuming both known and calibrated surface roughness. Roughness
parameters assumed a priori have average values over the 7 x 7 pixel
area of hyus=0.57 cm, and C;=0.76 cm found using the method of
Rahman et al. (2008). VWC thus derived from each image are given in
Table 4.

In order to infer soil moisture it is necessary to assume that an area
of some size is homogenous. Moisture estimates are derived for image
squares of 5x5, 7x7, 9x9, 11x11, 15x15, and 21x21 pixels,
representing aggregated land areas both above and below the 8 x 8
SAR pixel (100 mx 100 m) limitation imposed by product require-
ments. Performance statistics are computed comparing the modeled
soil moisture value representative of the land surface area to the
point-based in situ measured soil moisture at 5 cm depth.

3. Results
3.1. Comparing simulated data tests

When applied in the absence of model structural error the likelihood
objective function calibration consistently out-performs the multilook-
derived soil moisture calibration in ability to parameterize the model
with the goal of estimating surface level soil moisture between satellite
overpasses. When AIEM surface roughness is assumed a priori the
likelihood approach is able to extract soil moisture time correlation
information from the land surface model to improve speckle account-
ing; the effect of any particular speckled pixel is reduced due to the
increase in sample size by sampling through time. This ability
diminishes as the accuracy of the a priori surface roughness degrades,
most likely due to the fact that the AIEM is highly sensitive to surface
roughness, and other factors affecting calibrated model error quickly
become dominated by surface roughness parameterization error
(Fig. 4). Additionally, the likelihood objective function space allows for
a more functional estimation of AIEM parameters in batch with NOAH
parameters. However, neither method is able to consistently estimate
the actual parameter values used to create the model-generated VWC
series (Fig. 5). At times the difference between calibrated and actual
values could be as much as 70% of the allowable parameter range.
Because many different parameter sets will result in relatively similar
model outputs — a phenomenon encountered in hydrologic modeling
known as equifinality (Beven & Binley, 1992; Beven, 2006) — small
changes in calibration data measurements can result in drastic changes
to calibrated parameter values.

3.2. Comparing real data tests

The ability of the model to represent the in situ observations can be
seen in Fig. 6b. Given this optimal calibration, NOAH predicts with 95%
confidence of +0.02 [m?/m?]. Reduction in the calibration data
density from continuous to on the order of SAR revisit frequency
(Fig. 6d) results in a 95% prediction confidence of +0.03 [m*/m’]
(Table 3). Visual inspection of the VWC time series also suggests that
both the full and sparse data sets offer enough information to facilitate
reliable predictions in most cases, however peak soil moisture is over
predicted using the sparse set since there are no observations of peak
behavior.

Parameter estimation using imagery clearly demonstrates the
importance of accounting for uncertainty in SAR measurements of soil
moisture. With observations consisting of square 7 x 7 pixel images the
multilook method with a priori surface roughness resulted in substantial
disagreement and bias, predicting with 95% confidence to within 4-0.10
[m3/m?]. Likelihood calibration offers error and bias improvement with,
in this case, a 95% confidence interval of +0.04 [m*/m?] VWC and a
reduction in absolute residuals bias (Table 3, Fig. 6). Again, the reasons
for improvement are twofold: the effect of any particular significantly
speckled radar pixel is reduced in the likelihood algorithm due to the
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Fig. 4. (M. Fix SR) Multilook and (L. Fix SR) likelihood calibration sensitivity to fixed a
priori AIEM surface roughness parameter error compared to (Est SR) estimating these
parameters — 10 7 x 7 pixel simulated images are used as observations.

increase in sample size by sampling through time, and the likelihood
objective function formulation is better suited for calibrating surface
roughness parameters in batch with LSM parameters. Soil moisture
derived using multilook methods and modeled by a calibrated LSM are
reported in Table 4 along with the estimated surface roughness
parameters. VWC inferred from the HH polarized imagery using a priori
roughness are high (due to poorly estimated representative surface
roughness values) compared to in situ measurements resulting in
substantially biased model predictions.

3.3. The effects of the homogeneity assumption

The usability of either method is heavily dependent on the assumption
that a given land surface area is homogeneous in terms of roughness and
moisture characteristics. While it is possible to derive soil moisture
estimates from SAR imagery under this assumption (e.g. Thoma et al.,
2008), these estimates are an effective value for the aggregated area. Both
the characteristics of the land surface itself and speckle accounting
requirements will determine the effects of the homogeneity assumption
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Table 3

Performance statistics for multilook and likelihood surface-level soil moisture
calibration attempts using 7 x 7 pixel SAR imagery as system observations. Statistics
represent a comparison between modeled and in situ measured soil moisture at all
20-minute time steps over the 99-day simulation period.

In-situ calibration ~ SAR calibration (7 x 7 pixels)

Continuous Sparse Multilook Multilook Likelihood

fixed SR est. SR
95% confidence [m?/m?]  0.02 0.03 0.10 0.08 0.04
Mean squared error 145 2.83 28.17 14.56 4.79
Residual percent bias 13.87 14.28 155.15 —59.82 10.82
[m?/m3+100]

on spatial resolution and accuracy, this study only looks at the effect of
radar pixel sample size.

Fig. 7 suggests that calibrated model prediction capability improves
as the land surface area considered increases until the homogeneity
assumption begins to fail. As the pixel sample size taken from individual
images increases speckle accounting improves on average, resulting in
more accurate observation data and calibrated time series, however as
the area increases the point-based in situ measurements may not well-
represent the imaged land surface. An examination of (Table 4) values of
image-derived moisture estimates indicates that AIEM error affects the
multilook calibration suggesting that the image method for deriving
surface roughness is unreliable at these scales. Because speckle
influences the per-pixel surface roughness estimates using the image-
based a priori method, the image-derived surface roughness parameters
better represent the imaged area on average as the sample size
increases. As an example, an area of 11x11 pixels report surface
roughness parameter values of C;=1.20cm and h;,;=0.71 cm
compared to values of C; =0.76 cm and h;,,,s=0.57 cm when an area
of 7x 7 is used. In the former case soil moisture is inferred from imagery
at the reported times (Table 2) as 1,1, 2,4, 6,6 (% VWC) and in the latter
as 4, 3, 6, 12, 15, 15 (% VWC); inaccurate roughness parameters are
detrimental to the calibration effort — neither of these estimates match
well the in situ measurements of 1, 2, 11, 8, 8, 3 (% VWC).

The multilook algorithm estimating surface roughness is relatively
consistent in terms of accuracy independent of sample size, which is
explained by noting (not shown) that this algorithm finds maximum
agreement between NOAH modeled soil moisture and AIEM (with HPE)

Table 4

Soil moisture and surface roughness parameters measured in situ and derived using
calibration methods and real SAR images of a 7x 7 pixel area. Likelihood calibration
does not derive a soil moisture value from imagery directly, the derived values reported
here are found with an AIEM and HPE look-up table using the estimated values of
surface roughness parameters. Calibrated surface roughness values in the in situ
column represent values found by first calibrating NOAH to in situ soil moisture
measurements and then estimating AIEM surface roughness parameters using SAR
imagery as observations and an MSE objective function between modeled and
measured backscatter.

In situ Multilook fixed SR Multilook est. SR Likelihood

Image-derived and modeled soil moisture [% VWC]

Measured Derived Modeled Derived Modeled Derived Modeled

June 9 0 4 3.7 1 1.0 1 1.5
July14 2 3 3.8 1 1.2 1 23
Aug2 11 6 113 1 1.6 4 5.5
Aug 6 8 12 141 1 1.0 6 7.0
Aug 16 8 15 12.8 1 13 6 5.1
Aug20 3 15 113 1 1.0 6 34
Surface roughness parameters [cm]
Calibrated Measured Calibrated Calibrated

Rrms 1.48 0.57 121 2.55
C. 1.25 0.76 3.21 2.73
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Fig. 7. Performance statistics (top) 95% prediction confidence and (bottom) mean
squared error (MSE) between calibrated model generated surface level soil moisture
and in situ measurements (5 cm depth) using SAR imagery as observations. X-axis
labels represent the square-side number of image pixels sampled as homogeneous.
Performance statistics are derived over the entire 99 day validation period.

inverted soil moisture when parameters are chosen such that the two
models both report very low VWC values — almost consistently at the
allowed minimum of 1%. An example of this can be seen in Fig. 6h as part
of the real data trial.

4. Discussion on the handling of uncertainty

Land surface models are effective in estimating a state variable if
(i) they are appropriately parameterized, (ii) model structure is
sufficiently accurate and robust, and (iii) the forcing data (such as
precipitation) is sufficiently accurate. Although a demonstration of
the ability of the LSM to match observations is given, model structural
uncertainty is not explicitly accounted for in any calibration algorithm
presented here. Perhaps as importantly, calibration generally does not
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consider inaccurate or uncertain forcing data. Calibration is a process
of accounting for model parameter uncertainty, and in this case we
also show that some marginal benefit to speckle accounting can be
obtained using the likelihood objective function. In fact, likelihood
calibration implicitly estimates the information carrying parameters
({o¢}) from a traditional likelihood speckle accounting scheme. On the
other hand, data assimilation studies often seek to account for forcing
data (usually precipitation) deficiencies by merging (soil moisture)
observations with model state estimates (e.g. Crow & Wood, 2003;
Reichle & Koster, 2005; Crow, 2007). As it stands, the calibration
mechanisms presented here would not allow for simultaneous
attenuation of the effects of forcing data and parameter uncertainty;
merging calibration and assimilation activities is an active area of
research (e.g. Vrugt et al., 2005).

In general, the ability to map soil moisture with radar imagery is
dependent on the accuracy of the backscatter inversion technique. In
this case the AIEM is chosen because of its prevalence (Moran et al.,
2004; Verhoest et al., 2008), however it has been reported that the
IEM may not be an accurate representation of the backscattering
behavior of real land surfaces (e.g. Rakotoarivony et al., 1996; Zribi et
al.,, 1997; Baghdadi et al., 2004, 2006). Verhoest et al. (2008) proposes
that this is due to (i) intra-field heterogeneity in terms of roughness
and moisture conditions, (ii) the fact that volumetric scattering from
the sub-surface is neglected, and (iii) that assumptions implicit in the
model structure may be incorrect (the validity of assumptions is
unverified). Unfortunately because of speckle, estimating dielectric
properties from imagery requires a homogeneity assumption, the
hope being that when the model is inverted representative values of
surface roughness parameters for the area and model structure are
sufficient for inferring representative dielectric properties, and thus
water content. This assumption will neglect any interacting effects
between backscatter from intra-area heterogeneities which are not
accounted for in the parameterization such as multi-scale roughness
patterns (Mattia & Le Toan, 1999). We find in all cases described here
that the retrieval of soil moisture through inversion of the AIEM are
subject to some substantial error and should be treated as uncertain
and imprecise. Partly because it is often difficult to accurately infer soil
moisture from SAR imagery, data assimilation studies will sometimes
focus on inferring climatological anomalies by merging models and
imagery rather than attempt to extract precise VWC measurements
(Bolten et al., 2009; Crow, 2007).

Because of the sensitivity of calibration results to surface roughness
parameterization the importance of AIEM parameter uncertainty must
be emphasized. The likelihood method chooses surface roughness
parameter values which do not result in large disagreements between
soil moisture derived from different images that cannot be explained by
the model forcing data and structure. Although likelihood calibration
does offer some improvement in speckle accounting for the purposes of
calibrating a LSM (Fig. 4), it is apparent from comparing the values of soil
moisture inferred from imagery and calibration that differences in
surface roughness parameterization plays a significant role in the
determining calibrated model response (compare Table 4 and Fig. 6). Itis
apparent, however, that even this method of parameterizing the AIEM is
probably not optimal, as VWC derived from imagery using the estimated
parameter value does not agree well with in-situ measurements.

5. Conclusion

This paper outlines an approach to mapping distributed surface level
soil moisture between satellite overpasses using land surface models
calibrated with SAR imagery based on maximum likelihood speckle
accounting. The method is demonstrated using the NOAH land surface
model and the Advanced Integral Equation Method backscatter model
to invert soil dielectric properties. Likelihood calibration is tested using
simulated imagery, demonstrating marginal improvement over strict
multilooking methods for speckle accounting, and with real imagery of a

location in the southwestern United States demonstrating improvement
in agreement with point-based in situ measurements at small scales.
Improvement is due mostly to the algorithm's ability to estimate AIEM
surface roughness parameter values which are functional in terms of
deriving soil moisture over the set of available images. Effects of AIEM
surface roughness parameter uncertainty on model output show that
calibration is especially sensitive to these surface roughness parameter
values, which is consistent with previous studies. Investigation of the
effects of assuming homogeneity over an imaged area reveals that the
AIEM has value in terms of deriving descriptive parameter sets for
distributed areas, although this ability diminishes if the area is too large
to be considered homogeneous or too small for speckle accounting.
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