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SUMMARY

Future changes in precipitation will induce changes in the erosive power of rainfall and hence changes in

soil erosion rates. In this study we calculated downscaled mean annual precipitation and USLE rainfall

erosivity (R) for time periods 2030 through 2059 and 2070 through 2099 in Northeast China using future

precipitation predicted from six GCM models under three emissions scenarios. To accomplish this we cre

ated a new approach wherein we combined the well evaluated methods developed by Zhang (2005,

2007) for downscaling monthly precipitation products at time scales meaningful for modeling erosion

processes, and the validated method developed by Yu (2002. 2003) for using a weather generator (CU-

CEN) to generate accurate RUSLE erosivity factors. Changes were compared to 1960 through 1999 condi

tions. A stochastic weather generator (CLICEN) calibrated to precipitation for the period 1960 through

1999 was used to temporally downscale the GCM output, from which the future R values were calculated.

Our results suggested a general increase in erosivity over the region by the mid-21 st century. Changes in

rainfall erosivity under the higher greenhouse gas emissions scenarios, Al B and A2, exhibited the greatest

projected changes. The results also indicated that changes in total annual rainfall amounts were not uni

formly correspondent spatially to changes in erosivity. Multimodel means showed a generally larger

increase in the northern portion of the region than that in the southern part. Future rainfall erosivity

changes will have important impacts on soil and water resources in Northeastern China.

Published by Elsevier B.V.

Introduction

Global changes in temperature and precipitation patterns will

impact soil erosion through multiple pathways, including precipi

tation and rainfall erosivity changes. In 2007, the Intergovernmen

tal Panel on Climate Change (IPCC) concluded that human

influence has contributed to the trend toward more extreme pre

cipitation events, and that future increases in extreme precipita

tion are very likely (IPCC, 2007). These findings are consistent

with previous studies of extreme precipitation patterns in the last

century across the globe. Groisman et al. (2005) analyzed the pre

cipitation records for over half of the land area of the globe, and

found that intense precipitation frequency has increased for many

extratropical regions, including China. Using a recently developed

comprehensive daily precipitation dataset of China, Zhai et al.

(2005) found that although there was little discernable trend in to

tal precipitation for China as a whole, there were distinctive regio

nal and seasonal patterns of trends, and precipitation intensity has

significantly increased.
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Climate change is expected to affect soil erosion based on a vari

ety of factors, including precipitation amounts and intensities, tem

perature impacts on soil moisture and plant growth, and direct

fertilization effects on plants due to greater CO2 concentrations,

among others. The most direct impact results from the change in

the erosive power of rainfall (Nearing, 2001). Rainfall erosivity rep

resents a measure of erosive force of rainfall to cause soil erosion.

The rainfall erosivity for a given storm, as most commonly calcu

lated for use in the Universal Soil Loss Equation (USLE) (Wischmeier

and Smith. 1978) or its revision, RUSLE (Revised USLE) (Renard et al.,

1997), is equal to the product of total storm energy (£) and maxi

mum 30-min rainfall intensity (/30), or £/30. The R-factor is defined

as the average annual sum of £/30 calculated from a rainfall record.

Current GCMs do not provide detailed precipitation information

that enables the calculation of the R-factor directly as a function of

rainfall intensity and energy. Therefore, statistical relationships be

tween monthly and annual precipitation and rainfall erosivity have

been used to study the R-factor changes with GCM outputs (Near

ing, 2001; Renard and Freidmund, 1994). Nearing (2001) used

these methods to estimate potential changes in R-factor from

two GCMs outputs across the contiguous United States in the

21st century. Nearing (2001) estimated that the average of
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magnitude of change across the country ranged between 16% and

58%. with some areas showing increases and other areas showing

decreases. With a similar method. Zhang et al. (2005) projected po

tential changes in rainfall erosivity from HadCM3 in the Huanghe

River Basin of China, and concluded that the rainfall erosivity

would increase by as much as 11-22% by the middle of the 21st

century across the region. However, these relationships have limi

tations, particularly with regard to snow dominated areas, and do

not consider the impact of large changes in the storm intensity or

duration on rainfall erosivity.

Stochastic weather generators are often used to generate long-

term, daily weather series for modeling applications, such as with

the process-based WEPP model (Flanagan and Nearing, 1995).

They have also been used to generate daily climate files from

monthly GCM-projections for climate change impact studies (e.g..

Mearns et al., 1997; Wilks, 1999; Pruski and Nearing, 2002a;

Zhang, 2005). Yu (2002, 2003) assessed the ability of the CLImate

GENerator (CLIGEN) (Nicks and Gander, 1994) to generate RUSLE

climate files for 165 sites in US and 43 site,s in Australia and found

that the generated /?-factor was highly correlated with the mea

sured R-factor, although the generated J?-factor was systematically

overestimated because of the particular storm pattern adopted in

WEPP, rather than an intrinsic deficiency of CLIGEN. Thus, CLIGEN

together with calibration formulas to adjust the generated /{-factor

is able to adequately generate the R-factor for RUSLE. This applica

tion of CLIGEN is superior to existing methods used to estimate R-

factor from only monthly precipitation data, which is often the

only information available from GCM outputs (Yu, 2002, 2003).

Generating erosivity using CLIGEN facilitates consideration of the

impact of rainfall intensity and duration on potential changes in

rainfall erosivity and soil erosion. Moreover, Nicks and Gander

(1994) also calculated the R-factor using CLIGEN for the eastern

US, and found that the isoerodent map was quite similar to those

given in the USLE handbook (Wischmeier and Smith, 1978).

There exists spatial and temporal scale mismatch between

GCM-projections and point-scale impact assessment of climate

change (Murphy, 1999). The spatial resolution of the GCM is often

coarser than that needed for assessing local impacts of climate

change on natural resources. Zhang (2005,2007) developed an ex

plicit method for spatial-temporal downscaling of GCM monthly

precipitation projections to daily weather data series using CLI

GEN. The method scales to a site-specific station explicitly consid

ering the spatial differences between climate variability at the two

scales. CLIGEN can then be used to further disaggregate monthly

climate values to daily weather series at the station scale.

The objective of this study was to assess potential changes in

projected future precipitation and rainfall erosivity to climate

change in northeastern China for the period of 2030-2059 and

2070-2099 from multiple models and scenarios. To do this we cre

ated a new approach wherein we combined the well evaluated

methods developed by Zhang (2005, 2007) for downscaling

monthly precipitation products at time scales meaningful for mod

eling erosion processes, and the validated method developed by Yu

(2002, 2003) for using a weather generator (CLIGEN) to generate

accurate RUSLE erosivity factors. In addition to producing a quan

tification of projected rainfall erosivities for the region, we found

that changes in total annual rainfall amounts were not uniformly

correspondent spatially to changes in erosivity.

Materials and methods

Study area and observed data

The study area, located in the northeast of China, covers

1,240.000 km2 and had a population of approximately 107 million

in 2002 (NBSC, 1998-2003). It comprises Heilongjiang.Jilin, Liaon-
ing Provinces, and a portion of the Inner Mongolia (Fig. 1). The cli

mate is a semi-humid continental climate with long, cold winters

and short, wet summers. The annual precipitation decreases from

southeast (900 mm) to northwest (400 mm), with irregular rainfall

distribution; high-intensity rainstorms occur during summer, and
have a high erosive potential.

The region is one of China's primary production areas of com

mercial food grains (maize, rice) and economic crops (soybean, su

gar beets, etc.). The area has experienced significant warming over

the last 100 years (Liu et al., 2004). Based on observed weather

data in northeastern China over the prior 50 years, Qian and Lin

(2005) found a trend toward warmer conditions over the entire re

gion, and a trend toward wetter conditions in the northern part of

the region, along with trends of increases in both precipitation

intensity and frequencies of extreme precipitation events. For the

southern part of the region, they found trends toward warmer

and drier conditions, with a decrease in large storms and precipita

tion intensities and decrease in the frequency of persistent wet

days (Qian and Lin, 2005). According to the IPCC AR4. an increase

in precipitation was projected in this region in all seasons (IPCC,

2007). Meanwhile, intense precipitation events are very likely to

increase, consistent with the historical trend in this region (Zhai

et al., 2005).

Databases from the China National Meteorological Centre

(CNMC) were used to extract daily precipitation and temperature

data for 1960 through 1999 from 107 stations within the study

area as a baseline condition for assessing the change in future cli

mate predictions. The stations included all the first- and second-

class national climate stations in northeastern China, and the cli

mate data were compiled and quality-controlled by the CNMC. A

screen check on missing precipitation and temperature data was

conducted to ensure all the stations have more than 30 years cli

mate records. 92 out of 107 stations were retained in our database.

We recognize that the rainfall measurements were undoubted im

pacted by wind. In that sense, the measurements used are similar

to those that were used in the original data for producing R-factor

relationships (Wischmeier and Smith. 1978).

Climate change scenarios

To estimate the potential future climate we used data from the

recent IPCC AR4 coupled ocean-atmosphere GCM simulations

(IPCC, 2007). Previous studies have suggested that regional climate

change projections from different GCM simulations were quite dif

ferent. The results varied spatially (NRC, 2003; Giorgi and Mearns,

2002), and the differences were more significant in precipitation

predictions than in temperature predictions (Vidal and Wade,

2008). Therefore, six GCMs were used to obtain the monthly pre

cipitation and surface air temperature (Table 1). To represent the

different greenhouse gas (GHG) emissions scenarios, three non-

mitigated IPCC Special Report on Emissions Scenarios (SRES): A2,

A1B and Bl, were selected. The three scenarios (A2, A1B and Bl)

represent 'high', 'medium' and 'low' GHG emissions scenarios

(IPCC, 2007). The three scenarios were implemented for all six

models during two time slices of 30 years each, from 2030 through

2059 and from 2070 through 2099, except for scenario Bl for the

HadGEMl model, due to its absence on the IPCC-DDC website. To

calibrate the GCM results, we also collected data from the 'Climate

of the 20th Century' experiment (20C3M), which simulates climate

conditions during 1850-2000 that was driven by the pre-industrial

GHG emissions. The 20C3M run during 1960-1999 was used as the

baseline period. Recent studies showed that the multimodel

ensemble simulated reasonably well the summer monsoon precip

itation and annual cycles for the late 20th century in the study area

(Kripalani et al., 2007; Lee et al., 2008). However, the inter-model
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Fig. 1. Location of study area.

135°

Table 1

Summary of General Circulation Models (GCMs) used in this study.

CGCM Research centre Resolution Country

CGCM3.1 (T47) Canadian Centre for Climate Modeling and Analysis, Canada

CGCM3.1 (T63) Canadian Centre for Climate Modeling and Analysis, Canada

CSIRO-MK3.0 Commonwealth Scientific and Industrial Research Organization (CSIRO) Atmospheric Research, Australia

UKM0-HadCM3 Hadley Centre for Climate Prediction and Research/Met Office. UK

UKMO-HadGEMI Hadley Centre for Climate Prediction and Research/Met Office, UK

ECHAM5/MPI-0M Max Planck Institute for Meteorology, Germany

3.75° x 3.75"

2.8s x 2.8°

1.875° x 1.875°

2.5° x 3.75°

1.25° x 1.875°

1.875° x 1.875°

Canada

Canada

Australia

UK

UK

Germany

variability is slightly larger in summer precipitation (Kripalani

et al, 2007; IPCC, 2007), implying the needs to calibrate the GCM

20C3M runs with observed data for future changes.

Dovmscaling and R-factor calculations

A spatio-temporal downscaling process (Zhang, 2005, 2007)

was used to downscale monthly precipitation of CCM-projections

at scale of GCM-grid boxes to scale of specific weather stations.

Spatial downscaling

Spatial downscaling in this study was performed between a sta

tion and a GCM-grid box containing the station following the

methods of Zhang (2007). First, we produced QQ-plots of the ob

served monthly precipitation data for the time period of 1960-

1999, ranked in order of magnitude, using the corresponding data

from 20C3M. We then derived both linear and non-linear regres

sion functions between the two sets of ranked values for each

month. The use of the non-linear transfer function was taken from

Zhang (2007), who found that the non-linear function produced a

superior transfer function in some cases. Hence, the monthly pre-
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Fig. 2. Relationship between the R-factor estimated using CLIGEN and the R-factor

based on measured precipitation data for 70 sites in China.

cipitation amounts of 1960-1999 from the 20C3M experiment

were used as the control, and the historical monthly data of the
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same period were used as the baseline climate condition. Then the

regression functions were applied to the GCM-projected future

precipitation of each month. The non-linear function was used

for precipitation values within the range in which the function

was fitted, and the linear function was used for the values outside

the range to generate conservative, first-order approximations. For

each calendar month, 30-year-downscaled monthly precipitation

values were obtained at each station for the two future time slices.

Then the monthly means and variances of the future climate at

each station were calculated.

Table 2

Mean, standard deviation, maximum, and minimum of annual precipitation calculated by Kriging based on the 92 sites across the study area, and the spatial mean percentage

changes, as simulated by the six models under the three emission scenarios.

Observation (1960-1999)

Mean (mm)

SD(mm)

Max. (mm)

Min. (mm)

CCCM3.1 (147)

Mean (mm)

SD (mm)

Max. (mm)

Min. (mm)

Mean change (%)

CCCM3.1 (T63)

Mean (mm)

SD (mm)

Max. (mm)

Min. (mm)

Mean change (%)

CSIR0-MK3.0

Mean (mm)

SD(mm)

Max. (mm)

Min. (mm)

Mean change (%)

UKM0-HadCM3

Mean (mm)

SD (mm)

Max. (mm)

Min. (mm)

Mean change (%)

UKMO-HadCEMl

Mean (mm)

SD(mm)

Max. (mm)

Min. (mm)

Mean change {%)

ECHAMS/MP1-0M

Mean (mm)

SD (mm)

Max. (mm)

Min. (mm)

Mean change {%)

2030-2059

A2

593

152

1209

280

17.7

609

155

1345

311

20.8

593

144

1152

310

17.7

564

140

1112

294

11.9

534

99

927

308

6.0

490

121

1042

252

-2.8

A1B

605

140

1213

321

20.0

627

156

1260

320

24.4

603

157

1214

306

19.6

585

139

1092

313

16.1

530

121

1066

290

5.2

533

111

891

301

5.8

B1

580

150

1233

298

15.1

603

133

1124

322

19.6

565

122

988

285

12.1

545

128

988

293

8.1

/

/

/

/

/

559

112

955

307

10.9

504

125

1042

278

2070-2099

A2

709

164

1380

374

40.7

703

143

1256

419

39.5

621

133

1105

325

23.2

688

197

1659

252

36.5

551

113

1070

313

9.3

551

125

1047

311

9.3

A1B

632

156

1321

324

25.4

652

155

1322

333

29.4

605

146

1133

285

20.0

682

151

1229

356

35.3

546

114

1166

303

8

536

121

884

283

6.3

B1

605

152

1204

281

20.0

627

129

1118

337

24.4

615

274

1260

293

22.0

592

167

1396

287

17.5

/

/

/

/

/

524

131

1048

255

4.0

Table 3

Averages and sample standard deviations across the six CCMs of spatially averaged, annual precipitation and rainfall erosivity (R) values, their changes relative to 1960-1999

observed data and ratios of average changes in annual precipitation to average changes in annual erosivity.

Observation (1960-1999) 2030-2059 2070-2099

A2

564

(0.018)

45

12

2642

(0.002)

381

49

A1B

581

(0.005)

40

15

2619

(0.001)

337

64

B1

570

(0.003)

22

13

2660

(0.001)

233

50

A2

637

(0.007)

73

26

3397

(0.000)

312

91

A1B

609

(0.008)

58

21

3037

(0.000)

253

71

Bl

593

(0.008)

40

18

2822

(0.002)

334

59

Annual precip.

Annual erosivity

Ratio of % change of

erosivity to precip.

Mean (mm)

St. dev. (mm)

% Change

MeantMJmmh-'ha-')

(P)
Stdev.fMJmmh-'ha"1)

% Change

504

1776

4.1 4.2 3.8 3.4 3.4 3.4
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Temporal downscaling

Temporal downscaling was done in order to estimate CLICEN

input parameters used to generate daily weather series represent

ing the future climates. The baseline CLIGEN input parameters

were determined by measured daily weather data of 1960-1999

50

1 I 40

30

"5 -3

I S
> 20

1

10-

3 I

ab

2030-2059

2070-2099

AIB Bl

Scenarios

Fig. 3. Changes in mean annual precipitation during 2030-2059 and 2070-2099

relative to 1960-1999 under three emission scenarios. Each value is the mean of six

models averaged over the region (±SD). Different letters indicate significant

differences at P< 0.05 (Duncan's test).

at each station. Four precipitation parameters were required

adjustment for running CLIGEN to generate future daily weather

series: Rd, daily mean precipitation; a\, the variance of daily pre

cipitation for wet days (days with non-zero precipitation); Pw/d,

conditional transition probabilities of a wet day following a dry

day; and Pw/W. conditional transition probabilities of a wet day fol

lowing a wet day.

To determine Pw/W and Pw/d, we separated the 40 years of ob

served data into two groups with 20 wettest and driest months

in each group, based on the rank of daily precipitation values and

calculated the Pw/W and Pw/d for each group (Zhang, 2007). A linear

relationship between Pw/W and mean monthly precipitation (Rm), as

well as relationship between Pw/d and Rm were developed based on

two pairs of data points. Future conditional transition probabilities

of precipitation were estimated from this linear relationship. For

convenience, two parameters are often defined for the Markov

chain:

71 =
up ,. _ p ,

= < w/vv ~ » w/d

(1)

(2)

representing the unconditional probability of daily precipitation

occurrence {n) and the lag-1 autocorrelation of daily precipitation

series (r).

The adjusted mean daily precipitation per wet day (Rd) was esti

mated as:

21.7

9.5

AIB

il mm

26.3

12.2

Fig. 4. Spatial variation ofchanges (%) in mean annual precipitation as simulated by six models for 2030-2059 (left) and 2070-2099 (right) relative to 1960-1999 under three

scenarios across the study area.
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Rm

Ndn
(3)

Na is the number of days in the month and N^n is the average num

ber of wet days in the month. New daily precipitation variance (a\)

related to monthly precipitation variance at the station was ob

tained in (Wilks, 1999):

T2 -

Nd7Z 1-r '« (4)

Computation of daily precipitation variance was problematic

for winter months, and in some cases negative daily precipitation

variance values were generated from Eq. (4) for some winter

months on some sites. This was found also by Zhang et al.

(2004), who attributed the problem to the relatively small variance

of projected monthly precipitation for the future winter periods

compared with measured monthly precipitation. For those months,

a simple proportional adjustment method (Zhang et al., 2004) was

160

140

120-

I 100-

£ 80H

1 60

g 40
.5
s

20

0

20H

IS

10

.S 30

|

H 20-

10

P, 1960-1999

O A2,2030-59

m AIB, 2030-59

^ B 1,2030-59

r\\

■ ■ ■

□ A2,2070-99

m A IB, 2070-99

^ B 1,2070-99

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 5. (a) Spatially-averaged, measured monthly precipitation for 1960-1999; (b)

projected area-averaged differences in monthly precipitation during 2030-2059

relative to 1960-1999 over the region; and (c) during 2070-2099 relative to 1960-

1999 over the region. Each projected value is the mean of six models averaged over

the region.

used by multiplying the baseline variance (derived from daily sta

tion records) by the variance ratio of projected monthly precipita

tion between 1960-1999 and 2030-2059 (or 2070-2099) period.

However, this scaling method had negligible effect on the R-factor

calculation because rainfall amounts were relatively small during

winter months in the study area.

Finally, all parameters at each station were adjusted separately

for each climate change scenario. These adjusted parameters were

then input to CL1GEN (V5.22564), and 100 years of daily series data

were generated for each station under each climate change sce

nario and each GCM.

Algorithm of R-factor calculation

The outputs of 100 years of daily series at each station from CL1-

GEN were used to extract precipitation amounts, P (mm), storm

duration, D (h), time to peak as a fraction of storm duration, tp,

and the ratio of peak intensity over the average intensity, ip, in or

der to calculate R-factors (Nicks et al., 1995). The algorithm and

steps were described in detail by Yu (2002,2003), and briefly sum

marized as follows.

Storms on wet days that have mean air temperature greater

than 0° were selected. The peak 30 min rainfall intensity (J30) for

each storm was calculated using Eqs. (5) (for storms with D

< 30 min) and (6) (for storms with D > 30 min):

/» = 2P (5)

(6)

where b is parameter for the storm pattern.

The storm energy (£) for each chosen storm was calculated as

the integration of unit energy (e) over the double exponential

storm pattern in CLIGEN:

f = Pe0 1-rrr e ^ ~ (7)

where Jp is peak intensity (mm h"1) and e is the unit energy calcu

lated using the erosivity equation in RUSLE (Renard et al., 1997):

mm"1,« = 0.72, and /0

(8)

20 mm h"1 (Brownwhere e0 = 0.29 MJ ha"1

and Foster, 1987).

Rainfall erosivity (El), defined as the product of /30 and E, was

calculated for each storm and then the monthly mean El were

120

2 ^

£ loo-

80H

60

I

.1

I1

40-

20-

2030-2059

2070-2099

A2 AIB Bl

Scenarios

Fig. 6. Relative changes in fl-factor during 2030-2059 and 2070-2099 relative to

1960-1999 (1776 MJ mm h"1 ha"1) under three scenarios. Each value is the mean

of six models averaged over the region (+SD). Different letters indicate significant

differences at P ^ 0.05 (Duncan's test).
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obtained to compute the R-factor, which is the sum of monthly

mean El. A program called CLG2RF (Yu, 2002) was modified in this

study to implement the algorithm described above.

In order to assess CLIGEN's ability to estimate the R-factor, daily

weather data and measured /?-factor (R) during 1951-2007 for 70

sites in China were collected. Daily precipitation and temperature

data from the 70 sites were then input to CLIGEN, and 100 years

of climate data for each site were generated. Then CLG2RF were

used to estimate the mean annual rainfall erosivity (Rgen) for each

of the 70 sites. A calibration relationship was derived between Rgen

and R in a similar way as was done for the US and Australia (Yu,

2002, 2003) (Fig. 2). This relationship then allowed us to estimate

R-factors for the future climate scenarios.

Computer programs were written to implement the R-factor

algorithm at all 92 sites under three scenarios for six GCM models.

After the precipitation and R-factor values were obtained, the re

sults were then interpolated onto a common grid (0.5° x 0.5°) with

Kriging method for spatial averaging and comparison purposes.

Statistical analysis was performed using the SAS program (SAS

Instituted Inc., 2003). A t-test and Duncan's multiple range test

were used to determine significant differences in mean precipita

tion and rainfall erosivity changes among the models, scenarios

and periods.

Results and discussion

Projected precipitation changes

Table 2 presents individual model-projected mean annual pre

cipitation and its changes averaged over the region during the

two future periods under the three scenarios. The models projected

increases over the region with the exception of the model ECHAM5

during the period of 2030-2059 under the A2 scenario (-2.8%).

Overall, the model CGCM3.1 (T63) simulated the highest increases

in mean precipitation in the six models during the period of 2030-

2059 and 2070-2099 under all the three scenarios, while ECHAM5

and HadGEMl projected the least increases.

Comparison of means testing (t-test) showed that the future

mean annual precipitation values averaged over the region and

averaged from six model predictions were significantly greater

(a = 0.05) under all three scenarios for both future time slices com

pared to the observed mean precipitation of 504 mm during 1960-

1999 (Table 3). For the period of 2030-2059. the increases in mean

annual precipitation were not significantly different between the

three scenarios using a Duncan means test (a = 0.05) (Fig. 3). For

the period of 2070-2099, significantly greater increases in mean

precipitation were projected under the higher emissions scenario,

Table 4

Mean, standard deviation, maximum, and minimum of annual rainfall erosivity (R) calculated by Kriging based on the 92 sites across the study area, and the spatial mean erosivity

changes, as simulated by the six models under the three emission scenarios.

Observation (1960-1999)

MeantMJmmh-'ha-')

SD (MJmmh-'ha-')

Max. (MJmmh-'ha-1)

Min. (MJ mm h"' ha"1)

CCCM3.1 (T47)

Mean(MJmmh-'ha-')

SD (MJmmh-'ha-1)

Max. (MJmmh-'ha-1)

Min. (MJmmh-'ha"1)

Mean change {%)

CCCM3.1 (763)

Mean {MJ mm h"' ha"')

SD (MJmmh-'ha-')

Max. (MJmmh-'ha-1)

Min. (MJmmh-'ha-1)

Mean change (%)

CSIRO-MK3.0

Mean (MJmmh-'ha-1)

SD (MJmmh-'ha-')

Max. (MJmmh-'ha-')

Min. (MJmmh-'ha-1)

Mean chang (MJ mm h"' ha"')e

UKM0-HadCM3

Mean (MJmmh-'ha-')

SD (MJmmh-'ha-1)

Max. (MJmmh-'ha-')

Min. (MJmmh-'ha-')

Mean change (%)

UKMO-HadCEMl

Mean (MJmmh-'ha-1)

SD (MJmmh-'ha-1)

Max. (MJ mm h"1 ha"')

Min. (MJ mm h"' ha"1)

Mean change {%)

ECHAM5/MPI-0M

Mean (MJmmh-'ha-')

SD (MJmmh-'ha-')

Max. (MJmmh-'ha"1)

Min. (MJmmh-'ha-1)

Mean change (%)

2030-2059

A2

2365

484

4321

1453

33.2

2810

707

5192

1518

58.2

3162

877

6477

1710

78.0

2828

983

6979

1254

59.2

2606

683

5328

1473

46.7

2082

414

3541

1273

17.2

A1B

2790

554

4381

1644

57.1

3396

886

6091

1770

91.2

3229

1225

7034

1263

81.8

2855

769

5766

1395

60.8

2777

734

5486

1796

56.4

2469

479

3274

1279

39.0

Bl

2506

640

5320

1279

41.1

2947

640

4485

1583

65.9

2610

513

4489

1709

47.0

2847

761

5818

1512

60.3

/

1

1

1
1

2388

437

3304

1233

34.5

1776

547

3933

862

2070-2099

A2

3397

805

5871

1909

91.3

3675

769

5474

1910

10S.9

3260

741

5976

1609

83.6

3792

1084

8317

1775

113.5

3341

839

5867

1843

88.1

2915

932

7091

1502

64.1

A1B

2691

758

4937

1497

51.5

3058

993

6522

1540

72.2

3235

821

5976

1747

82.2

3360

795

6039

1863

89.2

3074

806

6674

1985

73.1

2801

788

4727

1349

57.7

Bl

2634

819

5538

1180

48.3

2989

544

4916

1884

68.3

3181

1159

6806

1439

79.1

2968

1066

7959

1430

67.1

/

/

/

/

/

2339

620

4543

1229

31.7
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A2. compared to the lowest emissions scenario, Bl (a = 0.05). These

projected increases in precipitation in the study area are compara

ble to other results of increases over high latitude northern hemi

sphere regions (up to 20% or more) (Giorgi and Bi, 2005).

Differences of projected precipitation changes across the mod

els, as quantified by the standard deviation, were greater for the

2070-2099 period than for 2030-2059 for all three emission sce

narios (Table 3). Standard deviations were also greater for the sce

narios with the greater level of anthropogenic forcing levels (i.e.,

A2 vs. A1B vs. Bl). The increase in variance between climate pro

jections for the later time period was indicative of the fact that

the GCM models cannot be expected to project as well over the

longer time period or under condition of greater forcing. These re

sults agree with those of Kharin et al. (2007), who reported that the

inter-model uncertainties in extreme precipitation changes in

creased significantly with the increased anthropogenic forcing.

Fig. 4 shows the spatial patterns of the multimodel-averaged

relative change (%) in mean annual precipitation using the ob

served annual mean precipitation of 504 mm during 1960-1999

as a reference value. The smallest value of the change was a posi

tive 7.9% during 2030-2059 under the A2 scenario, which indi

cated that the projected mean annual precipitation increased

over the entire study area during the both future time periods un

der all three scenarios. The general spatial trend showed the great

er increases in the southwestern and eastern areas for both time

periods under all scenarios, and lesser increases in the northern

and central parts of the region occupying the Greater XingAn

Mountains, Small XingAn Mountains, Changbai Mountain and

Songnen Plain.

Fig. 5 shows results for projected monthly mean precipitation

changes, averaged across the six GCM model outputs. Overall pro

jected precipitation showed increases for every month during both

future periods and under all three emission scenarios, except the

September for the A2 scenario during 2030-2059. The seasonal

pattern of monthly mean precipitation estimated by the three

emission scenarios was similar during the two periods, with great

er increases in precipitation during the summer months. The abso

lute changes in precipitation were also larger in most months for

2070-2099 than for 2030-2059.

Projected rainfall erosivity changes

The trends in scenario-averaged, projected annual erosivity

changes followed the same basic pattern as did the trends in pre

cipitation (Fig. 6). As with precipitation, projected erosivity values

were significantly greater (a = 0.05) than those for the period

1960-1999 in all cases. As expected, the greatest rainfall erosivity

was simulated in 2070-2099 under the A2 scenario. Of the six

models, the model ECHAM5 projected the smallest increases in

erosivity, while the models CGCM3.1 (T63) and CSIRO-MK3.0 pro

jected the greatest increases (Table 4).

Overall, the methods outlined here show an increase of between

17% and 91% in rainfall erosivity by mid-century, and between 32%

and 114% by the end of the century (Table 3). These magnitudes of

percent change were 3.4-4.2 times greater for erosivity than for

precipitation. This is consistent with the previous studies from

other places (Pruski and Nearing, 2002b; Nearing et al., 2005). This

may be an important finding in terms of erosion forecasting for this

90.3

12.1

91.2

14.8

Fig. 7. Spatial variation of changes (%) in mean annual rainfall erosivity as simulated by six models during 2030-2059 (left) and 2070-2099 (right) relative to 1960-1999
under three scenarios across the study area.
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area. The trends in the results suggest that erosion rates in this re

gion could increase dramatically more than that precipitation

amount changes alone might suggest.

The projected spatial patterns in erosivity changes (Fig. 7) from

multimodel scenarios are depicted as differences (in percentage)

between the mean downscaled GCM-projections from the six 1PCC

AR4 models in 2030-2059 (left) and 2070-2099 (right) relative to

1960-1999 under the three emission scenarios studied. Projected

rainfall erosivity increased over the entire region. The models

tended to project greater relative increases in erosivity in the

northern region compared to the southern portion. These spatial

patterns differ from those of projected changes in annual mean

precipitation in the region (Fig. 4), indicating that there must be

greater projected changes in rainfall intensity and energy for the

northern region than for the south. These findings are consistent

with previous studies in historical precipitation changes over the

region (Qjan and Lin, 2005; Zhai et ah, 2005), where precipitation

intensity was shown to have significantly increased in the northern
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Fig. 8. (a) Spatially-averaged, measured monthly erosivities (R) for 1960-1999; (b)

projected area-averaged differences in monthly erosivities during 2030-2059

relative to 1960-1999 over the region; and (c) during 2070-2099 relative to

1960-1999 over the region. Each projected value is the mean of six models

averaged over the region.

region during the last 50 years, while decreasing in the southern

region.

The summer months in this region have the highest levels of

rainfall erosivity, and these are also the months projected to have

the greatest increases in erosivity under a changing climate (Fig. 8).

indicating that increases in precipitation amounts are generally

accompanied by increases in precipitation intensity. Rainfall ero

sivities during May through October show increases during both

future periods and under all three emission scenarios, with partic

ularly large increases during the months of July through Septem

ber. This result is generally consistent with the seasonal trends of

mean monthly precipitation (Fig. 5).

Summary and conclusions

In this study, we evaluated the potential changes in precipita

tion and rainfall erosivity in the northeastern China for three future

climate scenarios A2. A1B and Bl from six GCMs using spatial-

temporal downscaling techniques. The future projections of pre

cipitation for northeast China in this study agree with the majority

of the GCMs from the IPCC AR4 that show very likely precipitation

increases in East Asia for both winter and summer for the 21st cen

tury (IPCC, 2007; Kripalani et al., 2007). The models predicted the

greatest precipitation increases in the southwestern and eastern

region. However, greater erosivity increases were projected over

the northern region than over the southern region. This disparity

in spatial trends between total precipitation and rainfall erosivity

is due to greater projected increases in rainfall intensities and

storm energies in the northern part of the study area, and is consis

tent with analyses of historical data (OJan and Lin, 2005; Zhai et al.,

2005). Our results also suggested that rainfall erosivity would in

crease at a greater rate (by a factor of 3.4-4.2) than the

precipitation.

The projected increases in future rainfall erosivity forewarns

important trends of soil loss and runoff in the northeastern China.

Based on the USLE or RUSLE estimates, a 1% increase in rainfall ero

sivity will cause a 1% increase in soil loss assuming other factors

related to crops, management, and conservation practices remain

the same. Previous studies have shown that the Northeastern Chi

na has experienced severe water erosion after about 100 years of

intensive cultivation (Zhang et ah. 2007; Wu et al., 2008). Unlike

agricultural lands in the US or on the Loess Plateau of China, there

are few vegetation and engineering conservation measures in place

for soil erosion control in northeastern China. The expected in

crease in erosivity will impose more pressure on the land re

sources, and may have a significant negative impact on

agricultural production. Our study highlights the need to design,

plan and implement soil conservation practices to combat poten

tially severe soil erosion in this region under climate change.

The contribution of this work is the combined utilization of two

previously published, tested, and proven methods to allow one to

use GCM output to make projections regarding USLE- and RUSLE-

type rainfall erosivities. This has potentially important implica

tions for conservation planning worldwide. As we look forward

to a changing future for rainfall erosivity, there is a need for more

careful monitoring and updates related to erosivity, which is a crit

ical component for conservation planning and for implementing

conservation programs. This work provides a step towards facili

tating conservation planning in a non-stationary climate.

Acknowledgments

This research was partially supported by the National Basic Re

search Program of China (2007CB407204) and the USDA Agricul

tural Research Service. We acknowledge the international

modeling groups for providing their data for analysis, the IPCC Data



106 Y.-C. Zhang et ai/Joumal of Hydrology 384 (2010) 97-106

Distribution Centre for collecting and archiving the model data.

The authors are thankful to Dr. Bofu Yu who gave helpful com

ments and the original FORTRAN code of the program CLG2RF.

References

Brown, LC, Foster. C.R., 1987. Storm erosivity using idealized intensity

distributions. Trans. ASAE 30. 379-386.

Flanagan. D.C, Nearing. MA (Eds.), 1995. USDA-Water Erosion Prediction Project:

Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10.

West Lafayette, Ind.. USDA-ARS Nat. Soil Erosion Research Lab.

Giorgi, F.. Mearns. L.O.. 2002. Calculation of average, uncertainty range and

reliability of regional climate changes from AOCCM simulations via the

"Reliability Ensemble Averaging (REA)" method. J. Clim. 15,1141-1158.

Ciorgi, F., Bi, X., 2005. Regional changes in surface climate interannual variability for

the 21st century from ensembles of global model simulations. Geophys. Res.
Lett. 32. LI 3701.

Groisman, P.Y., Knight, R.W., Easterling. D.R., Karl, T.R., Hegerl, G.C., Razuvaev, V.N.,

2005. Trends in intense precipitation in the climate record. J. Clim. 18, 1326-
1350.

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change. 2007.

The physical science basis. In: Solomon, S. et al. (Eds.), Contribution of Working

Group I to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change, Cambridge University Press. Cambridge, UK.

Kharin, V.V., Zwiers, F.W., Zhang, X., Hegerl, G.C., 2007. Changes in temperature and

precipitation extremes in the IPCC ensemble of global coupled model

simulations. J. Clim. 20.1419-1444.

Kripalani. R.H.. Oh. J.H., Chaudhari, H.S., 2007. Response of the East Asian summer

monsoon to doubled atmospheric CO2: coupled climate model simulations and

projections under IPCC AR4. Theor. Appl. Climatol. 87,1-28.

Lee. E., Kwon. W.. Baek. H.. 2008. Summer precipitation changes in Northeast Asia

from the AOGCM global warming experiments. J. Meteorol. Soc. Jpn. 86 (4),
475-490.

Liu, B., Xu. M., Henderson. M. Qi. Y.. Li, Y.. 2004. Taking China's temperature: daily

range, warming trends, and regional variations, 1955-2000. J. Clim. 17. 4453-
4462.

Murphy. J.M., 1999. An evaluation of statistical and dynamical techniques for

downscaling local climate. J. Clim. 12, 2256-2284.

Mearns, L.O.. Rosenzweig, C, Goldberg, R., 1997. Mean and variance change in

climate scenarios: methods, agricultural applications, and measures of

uncertainty. Clim. Change 35. 367-396.

National Bureau of Statistics ofChina (NBSC), 1998-2003. China Statistics Yearbook.
China Statistics Press, Beijing.

Nearing. A.M.. 2001. Potential changes in rainfall erosivity in the US with climate

change during the 21st century. J. Soil Water Conserv. 56 (3), 29-232.

Nearing. M.A., Jetten. V., Baffaut, C, Cerdan, O., Couturier, A., Hernandez, M., Le

Bissonnais. Y.. Nichols. M.H., Nunes. J.P.. Renschler, C.S., Souchere. V., van Oost.

K.. 2005. Modeling response of soil erosion and runoff to changes in
precipitation and cover. Catena 61,131-154.

Nicks, A.D.. Gander, GA, 1994. CUGEN: a weather generator for climate inputs to

water resource and other models. In: Proceedings of the 5th International

Conference on Computers in Agriculture. American Society of Agricultural
Engineers, St. Joseph. Michigan, pp. 3-94.

Nicks, A.D., Lane. L.J., Gander, GA. 1995. Weather generator. In: Flanagan, D.C,

Nearing, MA (Eds.), USDA-Water Erosion Prediction Project: Hillslope Profile
and Watershed Model Documentation. NSERL Report No. 10. USDA-ARS Nat.
Soil Erosion Research Lab., West Lafayette, IN (Chapter 2).

NRC, 2003. Understanding Climate Change Feedbacks. Report of the Panel on

Climate Change Feedbacks, National Research Council. National Academies
Press. Washington. 166pp.

Pruski. F.F., Nearing. MA, 2002a. Runoff and soil-loss responses to changes in

precipitation: a computer simulation study. J. Soil Water Conserv. 57 (1),
7-16.

Pruski, F.F.. Nearing. MA, 2002b. Climate-induced changes in erosion during the
21st century for eight US locations. Water Resour. Res. 38 (12), 1298.

Qian. W., Lin. X.. 2005. Regional trends in recent precipitation indices in China.
Meteorol. Atmos. Phys. 90, 193-207.

Renard. K.G., Freidmund, J.R., 1994. Using monthly precipitation data to estimate

the R-factor in the revised USLE. J. Hydrol. 157, 287-306.

Renard, K.G.. Foster, G.R.. Weesies, GA, McCool, D.K., Yoder. D.C, 1997. Predicting

Soil Erosion by Water: A Guide to Conservation Planning with the Revised

Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. US
Department of Agriculture, 404pp.

SAS Institute Inc., 2003. SAS/STAT* 9.1 User's Guide. SAS Institute Inc.. Cary, NC

Vidal, J.-P.. Wade, S.D., 2008. Multimodel projections of catchment-scale
precipitation regime. J. Hydrol. 353. 143-158.

Wilks, D.S., 1999. Multisite downscaling of daily precipitation with a stochastic
weather generator. Climate Res. 11,125-136.

Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses: A Guide to

Conservation Planning. USDA Agricultural Handbook 537. Washington DC
USDA.

Wu, Y.Q_. Zheng. Q.H., Zhang. Y.G., Liu. B.Y.. Cheng, H.. Wang. Y.Z., 2008.

Development of gullies and sediment production in the black soil region of
northeastern China. Geomorphology 101, 683-691.

Yu, B., 2002. Using CLIGEN to generate RUSLE climate inputs. Trans. ASAE 45, 993-
1001.

Yu. B.. 2003. An assessment of uncalibrated CLIGEN in Australia. Agric Forest
Meteorol. 119, 131-148.

Zhai, P.M.. Zhang, X.H.. Wu. H.. Pan. X., 2005. Trends in total precipitation and

frequency of daily precipitation extremes over China. J. Climate 18,1096-1108.

Zhang, G.H., Nearing, MA. Liu, B.Y., 2005. Potential effects of climate change on

rainfall erosivity in the Yellow River basin of China. Trans. ASAE 48, 511 -517.

Zhang, X.C. 2005. Spatial downscaling of global climate model output for site-

specific assessment of crop production and soil erosion. Agric. Forest Meteorol.
135,215-229.

Zhang, X.C., 2007. A comparison of explicit and implicit spatial downscaling ofGCM
output for soil erosion and crop production assessments. Climate Change 84,
337-363.

Zhang, X.C., Nearing. MA, Garbrecht, J.D., Steiner. J.L. 2004. Downscaling monthly

forecasts to simulate impacts of climate change on soil erosion and wheat
production. Soil Sci. Soc. Am. J. 68,1376-1385.

Zhang, Y.G., Wu. Y.Q,, Liu, B.Y.. Zheng, QH., Yin.J.Y.. 2007. Characteristics and factors
controlling the development of ephemeral gullies in cultivated catchments of
black soil region. Northeast China. Soil Till. Res. 96, 28-41.


