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The last 20 years have seen a Modeling and Observation
Revolution for the Earth System
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Networks and Complex Adaptive Systems

Complex Adaptive Systems (CAS’s) involve multiple node types
connected via multiple directional-weighted networks that create
feedback and self-organizing control under dynamical conditions.

Reductionism is inadequate for CAS’s.

In 1998 with ‘Small World’ networks (Watts & Strogatz, 1998) we
realized that systemic network topology and behavior matter.

But, standard network theory (and our thinking) focuses on social
and communication networks, which are limited special cases.

We need new network theories, especially for Process Networks.

In this talk we will:
— Briefly Introduce Process Network Concepts

— Give examples of Dynamical Process Networks derived from Flux
Tower and Phenology data

— Introduce some hypotheses we are testing, and the NEON and NPN
data products we are using to test them.




How Reductionism Views a Process Network

A simple deterministic system is reduced so
that independent variable Y, uniquely
controls process X;

X=f(Y1)-

In this case we think we know what X and Y
are and how to quantify them.

Experiments isolate the effect of Y on X and @ >®
quantify f over a range of scales .

This is a process network graph

Nodes have types

Connections have types

Connections have direction and weight
Connections may have rules or functions

Already, simple network theory does not apply



How Reductionism Views a Process Network

But, there are other factors and subsystems, so
process X is often a function of several Y’s:

X=F(Y, Yy Yy ) G

The typical conservation equation for a physical
system includes the history or position of X in
addition to control inputs:

X(t) = X(t-1) + Y, (t) + Y, (t) @ °

Many systems are approximately like this, at
least in the net sense and for a narrow range
of scales and assumptions.

Mass and energy flow networks governed by
conservation equations are good examples of
this type of process network.



How Complex Systems Science Views a Process Network

Complex systems generally feature coupling
and feedback between many nodes,
producing self-organizing subsystem
behavior, and/or thresholds where key
couplings turn on and off and
qualitatively different system states
emerge (Kumar 2007, Liu et al. 2007).

* Hierarchies of self-organizing
subsystems can emerge via feedback.

e Connections have characteristic
timescales at which processes operate.

A Process Network (PN) is a network of
* Connections have a type, direction, and  feedback loops and the associated

strength (and possibly follow rules) timescales that depicts the magnitude
and direction of flow between the

* In a multitype network, connections and different subsystems. The PN graph itself

nodes may be qualitatively different. defines the system state. (Ruddell and
Kumar, 2009a)



Flavors of Process Networks

The real process network is what we
usually think about. But we rarely
(never?) know what that is with

precision, especially at scales we
cannot observe.

—> real



Flavors of Process Networks

The real process network is what we
usually think about. But we rarely
(never?) know what that is with
precision, especially at scales we
cannot observe.

There is also the potential process

network which includes all Y,
connections and nodes that could

possibly ever exist, including those

that do currently exist. This is even

more difficult to establish.

—> real
—> potential



Flavors of Process Networks

The model process network is an
approximation for modeling or
observational purposes

uses measurable nodes and connections
uses aggregated or simulated nodes M

focuses on node(s) of interest X at a
specific space-time scale

aggregates real nodes that share a space
and type to reduce detail, where possible

Usually distorts the true system structure
and behavior, but hopefully not too much

Used to predict or to test hypotheses

—> real

—> potential
—> model



Flavors of Process Networks

Dynamical DPN’s vs. Steady State PN'’s

- Some connections are Dynamical (dashed)
representing some kind of co-variation

- Some connections are Steady State (solid)
representing an average static link

- Experiments often observe co-variation to
infer process; that is a DPN. | (

\

- Models usually consider changing nodes as \-—
the ‘variables’ and steady nodes as ‘control

parameters’, at a given scale and state.

4

—> real

—> potential
—> model

-=>» dynamical

Don’t confuse network dynamics
with dynamical process networks



Example: A model linear correlation multitype DPN
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Examples where the DPN coupling
thresholds distinguish system states
via changing network topology

Couplings are resolved using Information
Flow Statistics... ask me later!



Hydrological drought is a state
defined by Dynamical Process
Network Topology decoupling

6-month SPI through the end of July 2003

Using the BondIIeFUXNET site; a
corn-soybean ecosystem

6-month SPI through the end of July 2005

Copyright © 2003 Hational Drought Mitigation Center

[ +2.0 and above (extremely wet)
] +1.50 to +1.99 (very wet)
. e er gs +1.0 to +1.49 (moderately wet)
Standardized Precipitation Index [ -0.99 to +0.99 (near normal

http://www.drought.unl.edu/ [] -1.00 to -1.49 (moderately dry)
] -1.50 to -1.99 (severely dry)

Copyright © 2005 National Drought Mitigation Center B 2.0 and less (extremely dry) |3



Information Flow multitype DPN with network dynamics:
Observed flux tower Drought state vs. Normal state

Ruddell and Kumar (2009a)
2003 July: Healthy System State 2005 July: Drought System State
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Hypotheses and Implications

Whole-ecosystem DPN couplings derived from fine-scale
dynamics, such as eddy-covariance flux observations, are a valid
metric for an ecosystem’s macroscale functional niche and role.

The existence of a significant coupling on an ecosystem’s DPN
during a phenostage implies sensitivity of the ecosystem to
changes in the coupled subsystem that occur specifically during
that phenostage, but not necessarily other phenostages.

Under climate change, ecosystems will generally transition and
spatially migrate to maintain their DPN’s during all phenostages.

Therefore, if climate or other forcings alter the DPN in a location,
we may predict that another ecosystem that is adapted to that
functional DPN role will succeed the current one.
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NEON and Phenology Data
Useful for This Analysis



NEON Field Sites (current 2013)
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We initiated PhenoCam to provide automated, near-surface remote sensing of canopy phenology
across the Northern Forest region of New England, upstate New York, and adjacent Canada. We
began by installing high-resolution digital cameras ("webcams™) at more than a dozen established
research sites distributed throuaghout this reagion. With the collaboration of researchers and land



Ongoing Work

* Actually testing these hypotheses... easier said
than done!

e Using FLUXNET, mapping DPN’s for all of the
world’s observed ecosystems.

* Developing a general principle defining

phenostages using DPN functional roles rather
than traditional biological metrics.
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Abstract

It is increasingly likely that predictions of decadal climate change and land use
change will yield the accurate information needed to anticipate ecosystem
adaptation to human-induced change (e.g. climate variability, land use
change). It is therefore essential that we develop new theories, modeling
tools, and data products that are capable of predicting ecosystem adaptation
to these changes, and that can anticipate how possible nonlinear thresholds
will affect ecosystem structure, function, and services. This project links
information about a land surface ecosystem's dynamics (e.g. eddy covariance
flux tower data) from existing observational networks (e.g. FLUXNET, LTER,
NEON), paired with ecosystem phenology data from the U.S. National
Phenology Network (USNPN) to analyze how key dynamic couplings between
ecosystems, climate, and hydrology change as ecosystems progress through
successive phenological stages. The resulting dynamical process networks are
guantitative graphs of the complex system's network of couplings during each
phenological stage. By drawing generalizations and patterns from the study of
many ecosystemes, it is possible to use this theoretical framework to quantify
how ecosystems are sensitive specific climate changes during specific
phenological stages.



Appendices



Q: What is Information?
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Q: What is Information?

A: Information is the
Answer to a Question
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Q: What is Information?

A: Information is the
Answer to a Question

Q: What is our Question?

28



Q: What is Information?

A: Information is the
Answer to a Question

Q: What is our Question?

A: “What will be the Future State
of Timeseries Variable Y(t)?”

29



Shannon Entropy: The fundamental measure of
uncertainty and information

p(y) is the prior probability that discrete

variable Y takes state y. H (Yt) = _Z p(y)-log p(y)

yeY

H(Y,), the Shannon Entropy, measures the size

of the question of state; this is also the amount ply)
of information we gain when we learn the

answer to the question.

y=4
State y Y(t)
.. , y
Minimum H for 4 discrete states
y=4 H(Y)= 0 bits, no uncertainty
p(y)
y=3
y=2

. y=2 y=3 y=4

Maximum H for 4 discrete states
t
p(y) H(Y)= log,(4)= 2 bits 30




How to Measure Information Flow?
Transfer Entropy! t
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 To measure directional information flow and |
assess timescales of flow, we need an ]
asymmetric measure of information flow |

|

|

* Thomas Schreiber [2000] introduces Transfer Y i
Entropy T, conditioning information shared by |

X, and Y,on Y,’s history
PO (Veas X))

T(X, >Y,,7)= P(Y., Yeur X, ) l0g
t t yt,ygx” v P(Y, | Vi)

* T measures additional information contributed &
by X, across at time lag . Entropy reduced =
information produced. “

* By computing T across many time lags, we can
assess the time scale of directional coupling
from X, to Y,

T(Xt >Yt’7) =H (Xt—r’Yt—l) +H (Yt ’Yt—l) —H (Yt—l) —H (Xt—r’Yt ’Yt—l)

31



Establish Statistical Significance of Information

Flow between X, and Y,

How do we decide whether T is large
enough to represent a significant flow of
information?

Compare measured T against Ts, which is
the information flow using a time-shuffled
X, and Y, “bootstrapping”.

When T > Ts, a significant information flow
exists; X, contributes significantly to our
ability to answer questions about future
states of V..

Robustness of results additionally ensured
by quality control including testing on
coupled Logistic maps, and with various N,
m, and binning schemes.

p(Ts)
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For 100 samples,
95% confidence:

a=0.05
c=1.66

Gaussian Distribution;
area under curve = 1

Significance

/ Threshold

Area a = probability of
Type | error (false positive)

H(Ts) T Ts



Ecohydrologic process networks:
M e a S U reS Of CO nt rO | a n d 2. Analysis amlpcharacterizalinn

Benjamin L. Ruddell' and Praveen Kumar'

Synchronization in dynamical syStems e sz s

Gross information production 7*/(S)

. . . _]
A measure of system control exerted by S Gross information consumption T[ (S)

A measure of the system’s control of S

Ts(2) = 3 Ai,2,7) TO(S,7) =Y A(z,i,7)

Net information production 7¢(S) T e (S’ T) =T [+] (S’ T) T [-] (S, Z')

Total information production TST(V) is the normalized sum of T*/(S)
across all subsystems S

Mean System Shannon Entropy H(V) is the normalized average of all subsystem
Shannon Entropies H(S) 33



