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• Climate-biosphere interactions in the

North American Monsoon System

• Coupled land surface

and hydrology model
• Vegetation model

NoahMP-CATHY (Niu et al. 2013)

ECOTONE (Peters 2002)

Comparison of soil moisture outputs of AZ regional ECOTONE

with measurements at the Santa Rita Experimental Range

(SRER).

• Used site characteristics and weather data

from the Santa Rita Experimental Range

(SRER) to modify ECOTONE for SE Arizona

• Sensitivity tests indicate that on the plot

scale, the biomass and species distribution

are sensitive to initial conditions

• Found that the key parameters that influence

the effects of climate change are water use

efficiency, photosynthetic pathway type

(C3/C4) and root distribution

• Comparison with measurements from SRER

lead to the conclusion that ECOTONE’s soil

water sub-model has to be replaced with that

of NoahMP-CATHY

RESULTS AND PROGRESS NEXT STEPS

RESEARCH PLANGOALS

• Create a multi-level modeling framework for

understanding the climate-biosphere

interactions of North American Monsoon

System

• Couple an individual based, dynamic

vegetation model (ECOTONE) to a regional

climate model to include vegetation feedbacks

• Modify and integrate climate, land surface and

vegetation models to operate at 1 km scale

• Design the model to help with understanding

the spread of invasive species and their effect

on wildfire regimes
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• Complete coupling of ECOTONE with

NoahMP-CATHY

• Perform additional sensitivity analysis with

atmospheric forcing over the NAM region and

improve the coupled models

• Study the effect of rainfall and soil moisture

redistribution on the distribution of species

and biomass

• Study the effect of wetter soil over lowland

areas, which may buffer the impacts of climate

change
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Structure: Landscape

/ plots (1-100m2)

Input: soil moisture,

temperature, seed 

germination and 

establishment prob.

Output: biomass and

species distribution

Structure: Grid cells 

(1km2) / tiles

Input: vegetation 

type, soil type, 

climatic forcing

Output: Surface 

energy, water and 

carbon fluxes

Vegetation feedbacks: Biomass, root distribution in soil layers,

vegetation fraction and cover, litter, leaf area index

Abiotic environment: available soil moisture

air and soil temperature
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STUDY SITES IN THE SOUTHWEST

COUPLED NoahMP-CATHY

• Used site characteristics, vegetation, and

weather data from the Kendall catchment

site to simulate vegetation change (Scott

et al, 2010) at the site

• Drought caused the decline of native

vegetation and the spread of the invasive

Lehmann lovegrass, which has higher

seed survival and establishment rate in

dry years

• Lovegrass‐dominated ecosystems are

less effective at using precipitation pulses

than native species (Huxman et al.,

2004)

• Model vegetation change at Kendall

catchment (ECOTONE+NoahMP/CATHY) to

understand the causes of vegetation change

at the site

• Model spread of Lehmann lovegrass and

buffelgrass at Santa Rita ER

(ECOTONE+NoahMP) to invasion of non-

native grasses at the site

• Compare the spread of Lehmann lovegrass at

SRER and Jornada LTER

(ECOTONE+NoahMP) to understand the

causes of the differences in its distribution at

the two sites

• ECOTONE: an individual based dynamic

vegetation model (Peters 2002) 

An example of landscape of 15 plots in ECOTONE.

Horizontal axis: species index, vertical axis: individual plants’

index. Marker size is proportional to biomass, colors indicate

different species.

• Moisture source for the North American

Monsoon (NOAA)

Field data (Scott et al, 2010)

• Santa    Rita   Experimental

Range (SRER, AZ) - 200 km2

• Jornada LTER 

(NM) - 800 km2

Elevation model (a), upstream area (b),

soil moisture (c) and leaf area index (d)

at 4 m resolution (Niu et al, 2013,

Ecohydrology)

• Kendall catchment  in WGEW (0.1 km2)

ECOTONE output

(WGEW, AZ) - 150 km2

• Walnut Gulch Experimental Watershed
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