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USDA Steady-State Chlorophyll Fluorescence and Photosynthesis under Light and Drought Conditions in Camelina Plants
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A / Research questions? \ / \

Introduction : : :
2. Fs vs. light and drought 3. Fs & A relationship
What is the best PAR range to detect drought stress using Fs?
Crop vield decreases when photosynthesis is limited by drought conditions. Yet -
farmers do not monitor crop photosynthesis because it is difficult to measure at In order to achieve this objective we have 3 goals: Moo= | | | i | | | aPAR - 300 oPAR = 500 .
the field scale in real time. Steady-state chlorophyll fluorescence (Fs) can be used . | N 10001 1 el ; B0 pvalue < 0.05 * | pualue<00s « *
at the field level as an indirect measure of photosynthetic activity in both healthy 1. Understand how Fs behaves under d!fferent I!ght conditions. - 900y : _ % qo0 |
satellite-based sensors on a regular basis over large agricultural regions. 7 3. Understand the relationship of Fs and Photosynthesis under different |Ight and drought ooy .f | 45l £ 2 s _
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Chlorophyll Vegetation Index A) Camelina sativa (L.) plants were grown in: v'3 controlled-environment chamber = ¥ "3 © . . . ’ 5‘9& . = R Y oo
Concentration (NDVI, EVI) v at 25/18°C DRty e S I I - T TR
| | v'for a 12-h photoperiod : A (umolCO, m™< s7) A (umolCO, m™< s7)
. . ) 1
direct indirect ¥ with irradiance of 500 umol m s *New model is valid for all treatments =Fs/Fo = does not improve our results
| B) 16 pots containing 1 plant each were divided into 3 different treatments: "Fs/Fo = does not improve our results =Fs = positive correlated with Photosynthesis (A)
] ] ="Balance between Fs, A, and NPQ "Positive and good correlation between Fs & A = aPAR
PhOtOSV“thESlS PhOtosyntheSIS Day 1 Day 2 .PAR = 300 & 500 — A and FS Sim”ar behaVior (ContrOI - When plants are ||ght adapted.
Rewater — Drought)
l l v'8 pots — control v'8 pots — control
v'8 pots — drought v'5 pots — drought
© Good!! But...Only ooP 5 P g .
_t leaf scale ® Not Good!! 0 pots — re-water 3 pots — re-water
y -— Best PAR range to detect drought stress using Fs
C) 2 types of measurements were made: [ l’ \ -
We need a good estimate of photosynthesis at landscape scale!! 1. Gas-exchanges & chlorophyll fluorescence { PAR range = 300 — 500 umol m™s™* J
2. Light response curve of A, Fs, and NPQ Different letters denote significant differences at the a=0.05 level
We think that answer lies in: . 20 1000 2 ;
The FLuorescence EXplorer (FLEX) —> All parameters were measured with a LI-COR 6400. | aPAR=300 ;
CHLOROPHYLL FLUORESCENCE, is the first mission proposing to \_ 0 15} 3007 151 %
which we can measure using gas exchange launch a satellite for the global EN 600 1 ©
instruments and we will be able to measure monitoring of steady-state chlorophyll = ) % I 400! 7
by satellite. fluorescence (Fs) in terrestrial / 5 s : 500 05}
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It is a protection mechanism for plants to dissipate the excess energy in the | | 7 7~ > 1 | _aememeeenl - 1ol | o 2
. . .. . : I O N R A S - O T
photosynthesis process. Fs occurs in competition with Non-Photochemical Quenching : S : 4001 i
(NPQ) or heat dissipation, which is the other pathway of energy de-excitation, and the o 2 o 5001 | 05
photosynthesis itself. Therefore, any increase in the efficiency of one process will result o o | . . - ) H . - H .
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in a decrease in the yield of the other two. By measuring the yield of chlorophyll o o Control Drought Rewater Control Drought Rewater Control Drought Rewater
fI.lJo.resc.ence, informgtion about changes in the efficiency of photochemistry and heat [/ a c=NPQ,, | *Fs/Fo = does not improve our results
dissipation can be gained (Maxwell and Johnson, 2000). | il | J d~ aPAR",, =aPAR = 300 = A & Fs same results = It’s the reason why the R? is so high.
_ ___ | N, ' =aPAR = 500 = Only the “A” values are different, not Fs nor Fs/Fo.
Zg:&;sézg:::;gn 5 oo | T b el =aPAR = 500 = Fs is not able to detect plant recovery
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Steady-state Adapted from Rosema et al. (1998) Adapted from Rosema et al. (1998) / \
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' Absorbed PAR (aP) ‘ PhotosyntheS|s (A) =Valid for high light adapted plants F. = aPAR| a 1+ Under amblent ||ght CondlthnS — aPAR — 300 — 500 HmOI m 25 1
N 2 1’1&_' ] :BE'E;;,“e 0RO, 08 *Qur dataset = low light adapted plants : d + aPAR™
et e "Does not describe our data set = Fs/Fo does not decrease . . ) o o .
Non-Photochemical when PAR>200 . = Combines the linear growth of a. We found a significant (P<0.05) positive correlation
_ Quenching (NPQ) . fluorescence as a function of aPAR: -
Transmittance between Fs and Photosynthesis.
P ————— N FSinitiar = a(aPAR) + b .. :
Our model coefficients : = | b. Normalizing Fs/Fo does not improve our results.
°r T . . . ® | ogistic curve representing the plant’s attempt to
7 ] =a= fraction of aPAR that is converted to Fs. : i . : . . .
: _ b= Fs with no aPAR input. .~ release heat in response to stress (¢)*: c. Fsis agood indicator of drought stress.
o - . . . . . -
g v : : =c ® maximun NPQ realized at highest point on the light curve. : c - aPAR™ :
< hThe rda;lor,]smpdbeltween *d ~ aPAR level for which NPQ attains 50% of NPQ,,,. c = aPAR [ ﬂ]
: Photosynt | esis and Fluorescence =n= sigmoidicity of the curve. d + aPAR \
£ changes with aPAR. \ .. *Serodio et al. (2011) 5
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