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Fig. 4: Spatial and temporal scales and processes influencing woody plant / 
grass ratios (modified from Gillson 2004). 

Methodological Approach
Study Site
• Fish Creek Watershed, southwestern Oklahoma, U.S.A. (~ 80 km2; 5º 05’ N, 99º 52’ W) (Fig. 1)
Encroaching woody plant species
• Prosopis glandulosa var. glandulosa (honey mesquite)
• Juniperus pinchotii Sudw. (redberry juniper)
Data
• Landsat TM, Landsat ETM+, and ASTER satellite imagery (1984, 1988, 1994, 2000, 2005)
• GIS data: elevation, slope, aspect, distance from roads, distance from streams, soil texture, soil gypsum content, soil depth, surface geology
Methods (Fig. 2)
• Remote Sensing Analysis (Objective 1)

– Multiple Endmember Spectral Mixture Analysis (MESMA; Roberts et al. 1998)
• Implemented in ERDAS IMAGINE, ENVI, and ArcGRID software
• Derive sub-pixel abundances of surface materials for each year of imagery

– Change detection using fuzzy logic (Zadeh 1965)
• Implemented in ArcGIS and IDRISI software
• Quantify temporal changes in the abundance of surface materials

• Spatial Modeling (Objectives 2 and 3)
– Local Indicator of Spatial Association (LISA, Local Moran’s I Statistic; Anselin 1995; Fig. 3)

• Determine whether temporal abundance changes of woody plants are spatially random or not
– Conceptual Model of WPE (Fig. 4)
– Geographically Weighted Regression (GWR; Brundson et al. 1996), Weights of Evidence (WoE; Bonham-Carter et al. 1988), and Weighted Logistic 

Regression (WLR; Agterberg et al. 1993)
• Derive weights or regression coefficients of explanatory variables
• Predict probability of WPE across study area
• Implemented in GWR, ArcSDM, and IDRISI software

QUANTIFYING THE SPATIO-TEMPORAL DYNAMICS OF WOODY PLANT ENCROACHMENT:
AN INTEGRATIVE REMOTE SENSING, GIS, AND SPATIAL MODELING APPROACH

Michaela Buenemann (Department of Geography and Regional Development, The University of Arizona)

Fig. 8: Change in mesquite endmember fractions between 1984 and 2005 (White areas 
represent the cumulative unmodeled areas from all years of imagery.).
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Fig. 7: Increase in the proportion of the study area characterized by 
a mesquite abundance of greater than 5 % (The solid black line is 
an exponential trend line.). 

Fig. 5: 2005 MESMA endmember fractions (White areas represent the cumulative 
unmodeled areas from all years of imagery.)

Fig. 6: Fuzzy magnitudes of change in mesquite and 
juniper endmember fractions between 1984 and 2005 
(White areas represent the cumulative unmodeled areas 
from all years of imagery.).

Fig.1: Location of the study area 

Fig. 3: LISA cluster map for WPE between 1984 and 
2005 (P<0.01; 9999 permutations). 
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Introduction & Problem Statement
• Woody plant encroachment (WPE)—the historically recent replacement of grasslands and savannas with shrublands and woodlands—results in reduced 

ecosystem value for livestock grazing, the predominant form of land use in grasslands and savannas.  The process also produces changes in soils, hydrology, 
vegetation, animal life, and biogeochemical and biogeophysical feedback cycles.  WPE has been documented in drylands around the world (e.g., Archer 1994).

• Despite a longstanding concern for and intensive research into WPE (e.g., Briggs et al. 2007, Brown 1950, and Smith 1899), the process continues to constitute a 
significant challenge for rangeland researchers, managers, and planners.  Our accumulated understanding of the process has thus either not been translated into 
sustainable land use strategies and practices or with only limited success.

• To a large degree, the deficiency of such success stories is due to our limited understanding of the spatio-temporal rates, patterns, and dynamics of WPE.
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Objectives
1. Quantify temporal changes in the abundance of woody plants and other land surface materials in a spatially explicit fashion across an entire watershed.
2. Predict a landscape’s relative vulnerability to WPE.
3. Assess the relative importance of geoecological and anthropogenic variables in promoting or reducing WPE vulnerability in the watershed.

Discussion
• WPE occurs in a temporally non-linear, 

spatially variable, yet predictable 
manner.

• Environmental variables may be more 
important in determining WPE 
vulnerability than previously thought.

• Integrative remote sensing, GIS, and 
spatial modeling approaches can help 
elucidate rates, patterns, and dynamics of 
WPE and help synthesize data from a 
multitude of studies but much work 
remains to be done...

Fig. 2: Flowchart of the research methodology 

Results Remote Sensing

Fig. 9: Comparison of “actual” WPE vulnerability (left) and WPE 
vulnerability predicted with GWR (right).

Fig. 10: Cross-tabulation results 
(Remote Sensing | GWR).

Fig. 11: Conceptual model showing the magnitude and direction of influence that the explanatory variables 
have on WPE vulnerability (Red and blue arrows indicate if a variable increased or decreased WPE 
vulnerability.  The strength of the arrows indicates the relative importance of a variable.  Dashed black 
arrows denote variables whose influence is uncertain or unknown. Dotted black arrows denote variables 
whose influence is described elsewhere.  Note that all variables are linked across space and through time.).

Implications
• Rangeland management (e.g., restoration, 

conservation, protection, ranching) should 
be done in a temporally and spatially 
explicit fashion.

• In conjunction with field data and 
techniques, geospatial approaches may be 
invaluable for rangeland management.

Questions or Comments?  Contact Michaela Buenemann at elabuen@email.arizona.edu. 


