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Selected Research from the WGEW 
and Challenges for the Future

Results of Many, Many Groups and Individuals
Presented by David Goodrich
USDA- ARS, Tucson, Arizona

Th is  p re s e n ta t io n  co n ta in s  
u n p u b lis h ed  d a ta  an d  s h o u ld  
n o t  b e  c it ed  w ith o u t
au th o r  p e r m is s io n .
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Background

• Draw heavily from:
– Renard, et al., 1993 -  Agricultural impacts in an arid 

environment:  Walnut Gulch case study.  Hydrological 
Science & Technology 9(1- 4):145- 190. 

– Walnut Gulch Experimental Watershed Brochure (Keefer: 
http:/ / www.tucson.ars.ag.gov/ WGBrochure_2003_FinalDraft
.pdf)

• Thanks to all who 
preceeded us!!
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OVERVIEW

• Selected 
findings from 
WGEW

• Challenges

– Hydro impacts 
of vegetation 
change

– Rainfall 
estimation

– Infiltration

• The future
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SEMI- ARID  RAINFALL -  RUNOFF  ISSUES

•   Small Output/ Input (O/ I) ratio

•   Large Noise/ Output (N/ O) ratio

    Rain gauge measurement error ~  3mm

    Wind induced gauge
  errors ~  5 to 15% of total
  rain depth (~ 15- 45 mm)

   N/ O ratio increases as scale increases

PPT
350
mm

ET
327
mm

Runoff
2 mm

Walnut  Gulch (148 sq. km)
Average Annual Water Balance

Chan.
Losses
20 mm

=  ~  0.6% of 
   rainfall

Hill-
slope

Runoff
23 mm

Infil.
327
mm
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Water Infiltration 
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SINGLE  RING  INFILTRATION OBSERVATIONS

n =  3
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Feb. 1981:
 -  LH106 treated with 
herbicide
   to kill woody plants

By 1984:
-  LH106 Canopy cover =  12 %
-  LH102 Canopy cover =  46%

June 1984:
-  Both LH102 & LH106 seeded 
   with grass and forbs with 
land 
   imprinter

Mid 1986:
-  Imprints obliterated
-  LH106 CC =  30% (19% 
grass)
-  LH102 CC =  36% (2% grass)

   PAIRED  WATERSHED  TREATMENTS
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Hydrologic Modeling to Detect Change

KINEROS calibrated/ validate to Pretreatment Condition (’73- ’80) (for volumes,
Nash- Sutcliffe Stat. Cal. =  0.92, and NS Val. =  0.93) and then run, using
calibrated parameters on a) Herbicide and b) Grass/ imprint events

a)  Herbicide 
     (’81 to ’83)

b) Grass/ Imprint 
     (’84 to ’87)
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Single Gage
(1 at a time)

Uncertainty due to Rainfall Variability

Small scale spatial variability of rainfall
(on the order of ~ 150 m)

Aug. 3, 1990

Rain Gage
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Challenge 

– At the point and small scale rainfall must be accurately 
measured to assess the hydrologic impacts of land cover 
change:

– It only gets worse as watershed size increases in arid in 
semiarid regions where runoff /  rainfall ratios are small 
and runoff is our primary measure of basin response

• Can we measure spatially distributed components of the 
water balance that are of much greater magnitude; e.g. ET, 
infiltration?  

• How might we improve spatially distributed estimates of 
infiltration parameters over large basins?

– Will radar- rainfall estimates improve our ability to 
estimate large- area areal rainfall outside of WG?
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? QUESTION ?
Can “fast” responding Veg. be used as a distributed 
infiltration gauge in water- limited environments? 

Distributed Forage Weight 
Image (green or senescent)

Point Measure Rain (Infil =  
Rain – Runoff)

R A N G E S
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Challenge 

– At the point and small scale rainfall must be accurately 
measured to assess the hydrologic impacts of land cover 
change:

– It only gets worse as watershed size increases in arid in 
semiarid regions where runoff /  rainfall ratios are small 
and runoff is our primary measure of basin response

• Can we measure spatially distributed components of the 
water balance that are of much greater magnitude; e.g. ET, 
infiltration?  

• How might we improve spatially distributed estimates of 
infiltration parameters over large basins?

– Will radar- rainfall estimates improve our ability to 
estimate large- area areal rainfall outside of WG?
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Idealized hillslope – channel profile
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Soil 2 – Transition soil: shallow, steep slopes

Soil 3–Floodplain soil: Deep, clay- rich, flat slope

Soil 4–Channel (thalweg)–sandy, rocky

 Goal -  determine general soil classes with texture information based on:
• Geomorphic characteristics (Drainage Den., Sinuosity, Channel 

morphology)
• Position on landscape (Hilltop, hillslope, floodplain)
• Parent material (geology) and climatic history

 GIS to extract channel geometry for hydrologic modeling and mobility

• channel width, depth, bank steepness

Combine Topo/ Soils to Improve Est. of Infil. Parameters

Soil 1 – Hilltop soil: relatively 
deep, shallow slopes, rocky

 10 to 30 
DEM data

often 
inadequate
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LIDAR  Missions
NSF Center for Airborne Laser Mapping 
Univ. of Florida  

Two Missions (June, 2003 & 2004)  

•   Walnut Gulch & San Pedro Riparian 
Corridor

•   Topography (second return)

– 1 m post points 

– Absolute vertical accuracy ~ 10 cm

– Point to point relative accuracy ~ 7cm

•    Vegetation (first return)

– Canopy height

– Canopy shape /  geometry 

•    Co- registered Color IR ~  20 cm 
resolution San Pedro

Corridor

P- J and Oak
Vegetation

June 2003 
Flight 

Trajectory

Existing DEMs: 
90, 40, 30, 10, 2.5 
m

Walnut Gulch
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Raw First Return LIDAR in San Pedro
Riparian Corridor 

Tombstone Hillshade

OK Corral
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Soil & Texture -  Test in Walnut Gulch

Step 1: Initialize Heuristic Model Based on Climate, Geology, Gen. Soils

Step 2: Reduce Soil Information: Re- classification based on texture similarity

Step 3: Geomorphic Analysis

• Using 2.5 m IFSAR extract attributes (slope, etc) for the known soil polygons

• Perform regression to predict soil texture: %sand,  %silt+ clay (fines)

Results in WG:  High Corr. between soil texture vs geomorphic variables

   C =  curvature, Dd =  drainage density, S =  slope
    r2 =  0.97, SExy =  0.163         ANOVA P- value =  0.002

Silt  +  clay  =  8 .46 (C) +  1500 (Dd ) -  0 .04 1(S)

Im prov ed 
Res ults  w ith 

LIDAR ??
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Visual  Compar ison: 2.5m IFSAR vs 1m 
LIDAR

IFSAR data – some roughness evident

Can see basic channels, locations

LIDAR Data – smoother surface

Better detail in the stream channels
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Challenge 

– At the point and small scale rainfall must be accurately 
measured to assess the hydrologic impacts of land cover 
change:

– It only gets worse as watershed size increases in arid in 
semiarid regions where runoff /  rainfall ratios are small 
and runoff is our primary measure of basin response

• Can we measure spatially distributed components of the 
water balance that are of much greater magnitude; e.g. ET, 
infiltration?  

• How might we improve spatially distributed estimates of 
infiltration parameters over large basins?

– Will radar- rainfall estimates improve our ability to 
estimate large- area areal rainfall outside of WG?
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NEXRAD over WG
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Rainfall estimation based on Nexrad data over WG

Assuming the conventional NWS power- law relationship and the 
RMSE objective function, estimate the optimal Z- R parameters 

over 11 storms

Z= aRb
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Scale dependency
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parameters!
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Storm: Aug. 11, 2000

Large  ov eres tim ations  
us ing operational Z- R!
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Storm: Aug. 11, 2000

Radar reflectivity images 
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Conclusions -  Challenges 
– Precipitation estimation

• NCAR high- res mobile radar campaign over WG

• Pair pit raingages with standard gages at several 
locations

• Interannual and interdecadal persistence of rainfall 
variability

– Changes in the Hydro Cycle with Vegetation Change – Multi-
scale, interdisciplinary approaches and controlled 
experiments

– Combine vegetation patterns with topography and soil to 
further improve infiltration parameter estimates

– Total sediment estimates from large flumes

– Scaling of ephemeral channel recharge
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α= 0.31
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Modeled rain intensity field

Cell X Y β α
1 591289 3505758 128 0.31
2 601343 3494693 94 0.46
3 597241 3498810 69 0.36
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