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The Woodlands, Texas, is well known as a town created following lan McHarg's ecological planning
approach that uses soil permeability to coordinate development densities and land use. Very few studies
have quantitatively measured the effect of this planning approach on stormwater management. In this
study, watershed stream flow modeling was conducted to assess five hypothetical land use scenarios.
These scenarios were compared with The Woodlands’ 2005 condition using the Automated Geospatial
Keywords: Watershed Asse§sment (AGWA) tool. thgt simulates watershed long-term stream flow and peal.< .dis—
lan McHa'rg charges during single storms. The objectives are to: (1) assess The Woodlands development conditions
GIS during 1974-2005 on whether land use locations are based on soil infiltration capacities and (2) com-
pare stormwater runoff generated in different planning approaches (conventional low-density, clustered
high-density, and The Woodlands approaches) using watershed streamflow modeling. Stream flow data
from U.S. Geological Survey gauge stations were used for AGWA model calibration and validation. The
result of percent development on different soil types indicates that McHarg’s approach was more closely
followed before 1997. After The Woodlands’ ownership was sold in 1997, later developments did not
follow McHarg’s approach. The departure from McHarg’s approach after 1997 is also reflected in the
stream flow simulation results. The 2005 observed stream flow volume is around 50% higher than that
of the simulated condition that would result if McHarg’s approach was kept. Overall, McHarg’s approach
using soil permeability to coordinate development densities and land use is effective in mitigating flood,
especially during intense storm events.

Ecological planning

Flood mitigation

Soil and water assessment tool
Kinematic runoff and erosion model

Published by Elsevier B.V.

1. Introduction The major urban development project of the past century in

the United States has been the development of suburban com-

Urbanization-induced hydrological alterations have been dis-
cussed extensively in the literature (Arnold and Gibbons, 1996;
Paul and Meyer, 2001). Urban development reduces the infiltration
capacity of the natural landscape, concentrates stormwater flows,
and results in water quality and quantity problems in receiving
water bodies (Schueler, 1994). For the last two decades, impervi-
ousness continues to be the most common measure to quantify
the effect of urban development on watershed hydrological condi-
tions (Schueler, 1994; Arnold and Gibbons, 1996). Furthermore, not
only the quantity but also the spatial configuration of impervious-
ness influences watershed outflows (Hammer, 1972; Rogers and
DeFee, 2005). Alberti and Marzluff (2004) and Alberti et al. (2007)
suggested both urban form and land cover pattern can be viable
measures for the changes of the hydrological regime.

* Corresponding author. Tel.: +1 435 797 0506; fax: +1 435 797 0503.
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munities. Conventional community development practice imposes
a homogeneous hardscape pattern on the natural landscape,
giving little consideration to advantageous drainage opportuni-
ties. Traditional drainage designs aim to remove stormwater as
quickly as possible, thus creating a flooding problem downstream
(Ferguson, 1998). The current mitigation practice of using var-
ious detention and retention basins to arrest excessive runoff
after storms is hindered in dense urban settings (Ellis and
Marsalek, 1996). In addition, if the basin is located inappropri-
ately, it exacerbates flooding (Perez-Pedini et al., 2005). Prince
George’s County, Maryland, piloted a more comprehensive hydro-
logical mitigation approach, called “low impact development”
(LID) (Prince George’s County, 1999). The LID concept was further
advocated by the U.S. Environmental Protection Agency (USEPA,
2000). LID suggests development policies and urban guidelines
and also combines a number of techniques, including storing,
infiltrating, evaporating, and releasing runoff slowly, at a rate
not exceeding that of the predevelopment condition (USEPA,
2000).
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Fig. 1. A neighborhood street view in Grogan’s Mill, the first subdivision village of The Woodlands. Unlike conventional development, McHarg used narrow and curbless
streets, with open surface drainage, mandated to preserve the original vegetation after development.

A noteworthy function of LID techniques is infiltration. Infiltra-
tion is arguably the most viable method to lower runoff volume, as
suggested by studies prior to the LID concept and echoed by cur-
rent studies (Ferguson, 1995; Echols, 2008). The Woodlands, Texas,
is one of the precursors that applied the LID concept in community
development in the 1970s (Yang and Li, 2010). George Mitchell,
a self-made oil and real estate businessman and an environmen-
tally conscious developer, launched this project in a lush loblolly
pine (Pinus taeda) forest 50 km north of Houston (Morgan and King,
1987). What The Woodlands is most renowned for is perhaps being

the first master-planned community that employed Ian McHarg’s
ecological planning approach (McHarg and Sutton, 1975; Forsyth,
2002; Kim and Ellis, 2009) (Fig. 1 and Fig. 2). Development of The
Woodlands is expected to be substantially completed around 2015
(Galatas and Barlow, 2004). The 2006 population was 83,884, and it
is projected to be 111,740 by 2011 (The Woodlands Development
Company, 2007).

McHarg’s ecological planning approach was to determine build-
ing densities and land use based on the hydrological properties of
the soil—that is, permeability. This concept was achieved by pre-

Fig. 2. A street view of The Woodlands Parkway. Commercial and residential buildings are hidden by the tree mask.
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serving land with high soil permeability as open space and using
land with low soil permeability for commercial or residential devel-
opments (McHarg, 1996). Despite the lack of scientific evaluation,
this ecological planning approach is regarded as successful based
on extreme storm events. The Woodlands survived the 100-year
storms in 1979 and 1994 with little property damage, while Hous-
ton, located 50 km to the south, was severely flooded in both events
(Girling and Kellett, 2005).

However, McHarg’s concept was subjected to several changes
during the course of development over the past three decades.
The concept was followed in the first suburban village (Village of
Grogan’s Mill) and part of the second village (Village of Panther
Creek) of The Woodlands but was adjusted to meet the home-
owners’ preferences of conventional suburbs in the later villages
(Galatas and Barlow, 2004). A significant setback from the orig-
inal McHarg plan occurred in 1985, although the spirit of the
“ecological plan” remained in the community mission statement
(Girling and Helphand, 1994). The year of 1997 witnessed a further
adjustment to the plan when George Mitchell sold The Woodlands
to Crescent Real Estate Equities and Morgan Stanley Real Estate
Fund Il (ownership 1997-2003), after which development sped up
and did not follow McHarg’s concept (Galatas and Barlow, 2004).
After 1997, the pace of construction accelerated and much of the
forest preserve land was converted into residential and commer-
cial developments (Haut, 2006). More pronounced environmental
impacts emerged—The Woodlands was flooded in 2000 (NOAA,
2000) and again in 2008 as a result of Hurricane Ike (Madere,
2008). During Hurricane Ike, western Woodlands, containing vil-
lages developed after 1997, was particularly hard-hit. However, the
early villages developed following McHarg’s approach remained
safe places (Madere, 2008).

McHarg's ecological planning approach intuitively suggests its
effectiveness in mitigating development impacts on stormwater.
However, for the past three decades, little study has been con-
ducted to evaluate the effectiveness of this approach. The objectives
of this study are to: (1) assess The Woodlands development condi-
tions during 1974-2005 on whether land use locations are based
on soil infiltration capacities and (2) compare stormwater runoff
generated in different planning approaches (conventional low-
density, clustered high-density, and The Woodlands approaches)
using watershed streamflow modeling. Five “what-if” land use sce-
narios of The Woodlands that reflect different planning approaches
were created for watershed simulation. Furthermore, development
was designated onto different soil types (e.g., sandy or clay soils)
to assess McHarg’s concept. A homogeneous forest land use sce-
nario served as the baseline condition to represent The Woodlands
prior to any development (Soil Conservation Service, 1972). Scenar-
ios were compared by using the Automated Geospatial Watershed
Assessment (AGWA) tool that simulates stream flow (Miller et al.,
2007).

2. Materials and methods
2.1. Study site

The study area is the Panther Creek watershed, in which the
majority of The Woodlands is located. Fig. 3 presents develop-
ment conditions in the Panther Creek watershed. The watershed
lies completely within Montgomery County, Texas, and is a sub-
watershed of the Spring Creek watershed, whose U.S. Geological
Survey (USGS) hydrological unit code is 12040102. Interstate High-
way 45 runs parallel to The Woodlands to the east and is a major
transportation corridor connecting Houston (50 km away) to the
south and Dallas/Fort Worth (340 km away) to the north.

The Panther Creek watershed boundary was delineated using
the outlet located at the confluence of Panther Creek and Spring
Creek (Bedient et al., 1985). The drainage area of the watershed
is 94.2 km2. The linear length of the watershed is approximately
37 km from the headwater to the outlet. The average slope of the
watershed is less than 1%. There are two USGS gauge stations on
the main channel of Panther Creek: station No. 08068450 and
station No. 08068400 (Fig. 3). The average annual rainfall in this
region is 840 mm. However, annual hurricane visitation often gen-
erates intense rainfall in single events, which sometimes causes
widespread flooding.

2.2. Data

Stream flow data from both USGS gauge stations on Panther
Creek during the water years of 1999-2006 were used for the
AGWA hydrological model calibration and validation analysis. A
water year is from October 1 of the previous year to September 30 of
the following year (e.g., water year 1999=10/01/1998-9/30/1999).
Historical weather data (e.g., precipitation and temperature) were
obtained from the National Climatic Data Center website (NCDC).
Thiessen polygon method (Hann et al., 1994) was used to calculate
precipitation for the Panther Creek watershed.

Three weather stations (COOPID No. 411956, COOPIN No.
419067, and WBANID No. 53910) and their representative rainfall
areas were identified using the Thiessen method. Data from 1999
to 2006 were collected from these three stations. River reach files
of the Panther Creek watershed were downloaded from the USGS
National Hydrography Dataset (NHD) website, and topographical
data at 30-m resolution of this watershed were obtained from the
USGS National Map Seamless Data Distribution System (USGS).
The soil dataset used in this study was the 1:24,000 scale Soil
Survey Geographic (SSURGO) database developed by the Natural
Resources Conservation Service (NRCS).

Land use information for four years (1984, 1996, 2001, and
2005) was obtained from various national land use/land cover
(LULC) datasets. The 1984 dataset was obtained from the U.S.
Environmental Protection Agency (EPA) Geographic Information
Retrieval and Analysis System (GIRAS) at 80-m resolution (EPA
Spatial Data Library). This dataset was then resampled to 30-m
resolution. The 1996 and 2005 datasets were obtained from the
National Oceanic and Atmospheric Administration (NOAA) Coastal
Services Center at 30-m resolution. The 2001 dataset was obtained
from the USGS National Land Cover Dataset (NLCD; Homer et al.,
2004) at 30-m resolution. Data accuracy of the 1996, 2001 and 2005
datasets ranges from 73% to 85% (Stehman et al., 2003; Homer et al.,
2004; NOAA), and the 1984 dataset accuracy is at a lower level (EPA
Spatial Data Library). Data accuracy of the above national datasets
has been proved to be acceptable in various studies on land use pat-
terns with respect to water quantity and quality assessment (Earls
and Dixon, 2005; Wolter et al., 2006).

These national datasets are produced through classifying Land-
satimages into different LULC classes (Jensen, 2000). The urban land
use class in the datasets comprises several densities based on the
level of impervious cover. Low-density and medium-density urban
developments have 20-49% and 50-79% impervious surfaces,
respectively, and common land uses are single-family hous-
ing units. High-density urban development (80-100% impervious
surface) includes apartment complexes, row houses, and commer-
cial/industrial/transportation facilities (Homer et al., 2004).

Yang et al. (2002) developed a method to quantify different lev-
els of imperviousness in the urban land use class. For example, in
developing the NLCD 2001 dataset, four imperviousness levels are
determined via the following procedure. First, the impervious areas
of several 1-m resolution orthophoto quadrangles are estimated.
Second, these impervious areas are cross referenced with the Land-
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Fig. 3. Panther Creek watershed development and stream network. According to the USGS, the percentages of impervious surface for low-density, medium-density, and

high-density development are 20-49%, 50-79%, and 80-100%, respectively.

sat scene to calibrate the relationship between percent impervious
cover and the Landsat spectral data. Third, the above relationship
is modeled using regression analysis. Last, the models are applied
to all pixels in the Landsat scene to define the impervious cover
level of each pixel. In this current study, the high and low imper-
vious cover levels were referenced to create high- and low-density
scenarios, respectively.

Eighteen LULC classes that were associated with The Wood-
lands development were used in this study. For simplicity,
these classes were further grouped into seven categories: (1)
water (open water, woody wetlands, and emergent herba-
ceous wetlands), (2) urban land uses (low-density residential,
medium-density residential, high-density residential, and com-

mercial/industrial/transportation), (3) forest (deciduous forest,
evergreen forest, and mixed forest), (4) agriculture (pasture/hay,
row crops, and small grains), (5) urban/recreational grasses,
(6) grasslands/herbaceous and shrubland, and (7) others (bare
rock/sand/clay and transitional).

2.3. Measurement

Two sets of analyses were conducted. In the first set of analyses,
the above seven land use class categories were used to examine the
LULC distribution in the Panther Creek watershed (The Woodlands)
over the period of 1974-2005. In the second set of analyses, the
original 18 LULC classes were reclassified to match the LULC classes
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Table 1

Impervious cover ratio index.
Land use Impervious percent range Median Ratio
Residential low density 20-49 35 1.0 (baseline)
Residential medium density 50-79 65 1.9
Residential high density 80-100 90 2.6
Commercial/industrial/transportation 80-100 90 2.6

specified by the AGWA hydrological models.

2.3.1. LULC distribution and development location

The first set of analyses evaluated the extent to which The Wood-
lands development followed McHarg’s ecological plan to preserve
more lands with permeable soils than those with less permeable
soils. The LULC distribution was examined in the watershed of
four years (1984, 1996, 2001, and 2005). Furthermore, the grids
were overlaid with soil grids to quantify the percentage of imper-
meable cover on each soil group. Soils in the watershed were
grouped according to their hydrological properties defined by the
U.S. Department of Agriculture (USDA, 2002). There are four hydro-
logical soil groups: A, B, C, and D—A soils are sandy and loamy sand
soils; B soils are sandy loam and loam soils; C soils are silt loam and
sandy clay loam soils; and D soils are clay loam, silty clay loam, and
clay soils. A soils have the highest infiltration rate, Band C soils have
moderate infiltration rates, and D soils have the lowest infiltration
rate.

2.3.2. Simulated land use scenarios

The second set of analyses assessed the potential impact of
different planning approaches on stream flow. Two important plan-
ning variables were examined in the scenarios. The first one was
development density; the second development location, that is,
which type of soil on which to place development.

2.3.2.1. Rationale for scenario. Scenario-based investigations of
alternative futures contribute to informed planning and facil-
itate the decision-making process and they have been used
in landscape and urban planning for over three decades. Sce-
narios serve two main functions: real-world planning for the
future and scientific inquiry (modeling) (Xiang and Clarke,
2003).

Related to these two functions are the two main types
of scenario-based studies: the “surprise-free” alternatives that
explore reasonable and feasible futures and “novel” scenarios
that investigate extreme conditions of benefits or risks (Shearer,
2005). Belonging to the second type, this study compared five
extreme “what-if” land use scenarios that used different planning
approaches and assessed the potential impact of these approaches
on stream flow.

Table 2

2.3.2.2. Considerations in creating scenarios. Three considerations
were taken into account when creating scenarios. The first con-
sideration was to maintain the total impervious cover area in
the watershed. Impervious cover presents an important variable
affecting watershed runoff. Generally, the higher the development
density, the higher the impervious surface percentage and the more
runoff that is generated (Schueler, 1994).

The Woodlands 2005 land use dataset was used to determine
the percent of total impervious cover area in the watershed. An
Impervious Cover Ratio Index (Table 1) was developed to cap-
ture the 2005 total impervious cover area and to create scenarios
that maintained the same impervious cover area. To create Table 1
Index, the lowest median value (that of the low-density resi-
dential land) was assigned as the baseline value of 1. Then, the
index values of the medium-density residential land and high-
density residential land were calculated based on their median
values of imperviousness. For instance, the impervious surface
area of 2.6 Ha of low-density residential land will approximate
that of 1Ha of high-density residential land. The value of 2.6, as
shown in Table 1 Index, was calculated by dividing 90 by 35,
where 90 is the median value of the impervious percent range
of the high-density residential and 35 is that of the low-density
residential.

The 2005 Panther Creek watershed (The Woodlands) percent
of impervious cover area was calculated using Eq. (1). Variables in
Eq. (1) are listed in Table 2. Since all the LULC datasets are at 30-
m resolution, the number of pixels was used as the surrogate for
the land area. The calculated watershed percent of imperviousness
(21.5%) was kept constant when developing scenarios.

Imperviousness %year 2005

NO.jow % 35% + NO.medium x 65% + N0~high x 90%

_ + NO-commercial/industrial/transportation x 90% (1)

No-watershed

Another closely related variable was the total developed area, pri-
marily residential and commercial land uses. The 2005 watershed
percent of total developed area was calculated using Eq. (2). Vari-
ables in Eq. (2) are also listed in Table 2. Note that the calculated
2005 watershed percent of total developed area (48.5%) differed

Variables in Eq. (1) used to calculate the percent of impervious cover area in the Panther Creek watershed (The Woodlands). The median values of impervious percent ranges

are presented in Table 1.

Variable Explanation

Imperviousness (%)

Percent of impervious cover of the Panther Creek watershed

NO.jow Pixel number of low-density residential class

35% Median of impervious percent range (low-density residential)
NO.medium Pixel number of medium-density residential class

65% Median of impervious percent range (medium-density residential)
NO.high Pixel number of high-density residential class

90% Median of impervious percent range (high-density residential)

N0~commercial/industrial/transportation

Pixel number of commercial/industrial/transportation class

90% Median of impervious percent range (commercial/industrial/transportation)

NO.yatershed

Total pixel number of the Panther Creek watershed
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from that of the scenarios, as explained in the following section.
Total developed area %year2005
No-low + No-medium + NO-high

_ + No-commercial/industrial/transportation (2)

No.watershed

The second consideration was to maintain the general trend
of The Woodlands development in history. Historically, the first
suburban village started downstream of Panther Creek, and devel-

opment evolved along the creek to the north. Hence, in creating
scenarios, the general trend of development from downstream to

upstream was kept.

The third consideration was the location of development
with respect to the location of soil type. This issue was
addressed according to the purpose of each scenario. Fig. 4
shows five hypothetical scenarios that were in accordance
with or were contrary to McHarg’'s planning approach of
placing developments based on hydrological properties of

soils.
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Table 3

Observed land use conditions and land use scenarios in the Panther Creek watershed (The Woodlands).
Conditions and scenarios Percent urban developed area Percent impervious cover? Watershed CN DataP
1984 Observed 15 9.3 71.6 EPA
1996 Observed 37 159 721 NOAA
2001 Observed 47.9 20.9 77.6 NLCD
2005 Observed 48.5 21.5 80.4 NOAA
1. Forest baseline 0 0 66.9 NOAA
2. High-density clay soil 239 215 73.3 NOAA
3. High-density sandy soil 239 21.5 74.4 NOAA
4. Low-density clay soil 61.4 215 79.0 NOAA
5. Low-density sandy soil 61.4 215 80.8 NOAA

2 The median value of the impervious cover percentage range was used to calculate the percent impervious cover. The median values are presented in Table 1. Scenarios

2-5 used the same amount of total impervious cover area as given for 2005.

b The land-use and land-cover datasets are 1984 EPA GIRAS data (80 m), 1996 and 2005 National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center

data (30m), and 2001 USGS National Land Cover Dataset (NLCD) (30 m).

2.3.2.3. Scenarios. Five scenarios were created, including a forest
baseline condition (Scenario 1), high-density scenarios (Scenarios 2
and 3), and low-density scenarios (Scenarios 4 and 5). High-density
scenarios represent high-density residential land use plans and
a large amount of open space is preserved from development in
other parts of the watershed. Low-density scenarios employ the
conventional Houston low-density development approach where
low-density residence is promulgated in the watershed.

(1) Baseline scenario
e Scenario 1: forest baseline condition

- The Woodlands 2005 land use dataset was used to create
this scenario. Urban developed areas (low-density residen-
tial, medium-density residential, high-density residential,
and commercial/industrial/transportation) were reclassi-
fied into evergreen forest, and other nonurban land covers
were maintained. Loblolly pine (P. taeda) evergreen for-
est was the site condition prior to development (Soil
Conservation Service, 1972; McHarg, 1996). This scenario
served as the baseline condition.

(2) High-density scenarios

To create high-density scenarios, medium-density and low-
density residential and commercial/industrial/transportation land
uses of 2005 were reclassified into high-density residential using
ArcGIS. The watershed percent of total developed area in Scenar-
ios 2 and 3 was calculated using Eq. (3). Variables in Eq. (3)
are listed in Table 2. Scenarios 2 and 3 have the same total
developed area and total impervious cover area. However, the devel-
opment pattern varies as a result of the different purposes of the
scenarios.

Total developed area %high—density scenarios

NO.jow X (35%/90%) + NO.medium X (65%/90%) + No-high
+ NO-commercial/industrial/transportation (3)

N0~watershed

e Scenario 2: high-density development on clay soil
- High-density residential development occurred on C and D
soils. This scenario was the optimal condition in reducing
surface runoff. It best adhered to McHarg’s approach, which
suggests placing development on soils with low infiltration
capacities (C and D soils) and preserving soils with high infil-
tration capacities (A and B soils).
e Scenario 3: high-density development on sandy soil
- High-density residential development occurred on A and B
soils. Presumably, Scenario 3 would yield more runoff than Sce-
nario 2, because Scenario 3 placed development on top of A and
B soils, instead of on C and D soils. Comparing Scenarios 2 and 3

would reveal the significance of development location per soil
permeability in forecasting watershed runoff.

(3) Low-density scenarios

To create low-density scenarios, medium-density and high-
density residential and commercial/industrial/transportation land
uses of 2005 were reclassified into low-density residential. The
watershed percent of total developed area in Scenarios 4 and 5 was
calculated using Eq. (4). Variables in Eq. (4) are also listed in Table 2.
Likewise, Scenarios 4 and 5 have the same total developed area and
total impervious cover area, whereas the development pattern varies
as a result of the different purposes of the scenarios.

Total developed area%|ow-density scenarios

NO.jow + NO.medium % (65%/35%) + (No-high
_ + NO-commercial/industrial/transportation) X (90%/35%) (4)
No-watershed

Scenarios 4 and 5 represent conventional low-density resi-
dential development approaches ubiquitous in the United States.
Compared with high-density scenarios, low-density scenarios have
a larger total developed area and a smaller open space area, but the
total impervious cover area stays the same.

e Scenario 4: low-density development on clay soil
- Low-density residential development first occurred on Cand D
soils. Lands with A and B soils were preserved as open space
for stormwater detention and infiltration. It was expected that
less runoff would be generated in Scenario 4 than in Scenario 5.
Comparing Scenarios 4 and 5 should likewise reflect the impor-
tance of development location per soil permeability.
e Scenario 5: low-density development on sandy soil
- Low-density residential development first occurred on A and
B soils. Scenario 5 was the worst case scenario among the five
in terms of runoff. This was because placing development on
A and B soils would generate more runoff than development
on C and D soils. Therefore, Scenario 5 would yield more runoff
than Scenario 4. Further, low-density scenarios (Scenarios 4
and 5) would generate more runoff than high-density scenarios
(Scenarios 2 and 3) as aforementioned.

The percentages of the total impervious cover area and the
total developed area in the watershed of these scenarios are pre-
sented in Table 3. In this study, high-density scenarios are regarded
as cluster compact development. This was because high-density
development plans concentrate impermeable cover. Compared
with low-density scenarios, high-density scenarios have lower per-
centages of total developed area in the watershed as a whole (see
Egs.(3)and (4)and Table 3). As aresult, large amounts of open space
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were preserved in high-density scenarios for stormwater detention
and infiltration.

2.3.3. Automated geospatial watershed assessment simulation

In the second set of analyses, AGWA (Miller et al.,2007) was used
to evaluate the hydrological consequences of urban development
in the watershed. AGWA is a multipurpose hydrological tool for
watershed modeling. Embedded in ArcGIS interfaces, AGWA com-
bines two extensively used watershed hydrological models: the Soil
and Water Assessment Tool (SWAT) (Arnold et al., 1994) and the
Kinematic Runoff and Erosion model (KINEROS) (Smith et al., 1995).
SWAT is a hydrological and water quality model for long-term
watershed simulations. Although it is widely used in agriculture
dominated land uses (Srinivasan and Arnold, 1994), SWAT could
also be used for urban watershed modeling (Arnold and Fohrer,
2005). KINEROS is an event-driven model designed to simulate
runoff and erosion for single-storm events in small watersheds. In
KINEROS, a network of channels and planes is used to represent a
watershed and the flood routing is based on the kinematic wave
method (Smith et al., 1995).

The main reason of using SWAT was because the concept of
SWAT is in accordance with McHarg’s planning approach. In SWAT,
each unique combination of land use and soil type generates a
Hydrological Response Unit (HRU). Superimposing various land
use types onto different soil patches allows runoff estimates for
comparison. Each HRU is directly related to a Curve Number (CN)
(Srinivasan and Arnold, 1994), and CN is determined by land use
and soil type (Hann et al., 1994). Therefore, McHarg’s approach of
allocating land use based on soil type could be assessed with SWAT.

For the purpose of this study, CN was the main parameter cal-
ibrated in the SWAT model to reflect the 2005 LULC condition. In
the KINEROS model, Manning's roughness coefficient (Manning’s
n) and CN were the parameters calibrated. In SWAT, the average
runoff depths of the watershed from 2001 to 2005 were simulated.
In KINEROS, the Soil Conservation Service’s rainfall frequency maps
(Soil Conservation Service, 1986) were used to generate 24-h storm
events of four return-periods (10, 25, 50, and 100 years). In each
scenario, the composite CN of the watershed was calculated using

Eq. (5):
ZA,-CN,-
i

0

i

(5)

CNcomposite =

where A; is the area of sub-watershed i and CN; is the CN of sub-
watershed i.

The SWAT model simulation was run for a five-year period
(2001-2005) following a two-year warm-up period (1999-2000).
The warm-up period was used to establish appropriate initial con-
ditions for soil water storage. Then the five-year period was divided
into two parts to perform model calibration (2001-2003) and vali-
dation (2004-2005). USGS measured data were used for calibration.
In the calibration process, a base flow program was used to screen
the base flow component in the USGS measured flows in order
to increase SWAT model efficiency (Arnold and Allen, 1999). The
SWAT model efficiency was assessed by two criteria. The first crite-
rion is the Nash and Sutcliffe coefficient (Nash and Sutcliffe, 1970),
calculated with Eq. (6):

3 (Qobs — Qsim)°

- obs 7 sim/ (6)
Z (Qobs - Qmean)2

where E is the coefficient of efficiency; Qs is the observed stream
flow (mm); Qsjm, is the simulated stream flow (mm); and Qmean
is the mean observed stream flow during the evaluation period. E
varies from minus infinity to 1, with 1 representing a perfect fit of
the model. The second criterion is regression analysis. For calibra-
tion, regression analysis shows how well the simulated data match
the measured data. For validation, regression analysis shows how
accurately the calibrated model predicts the subsequent measure-
ments.

3. Results
3.1. LULC distribution and development location

The Woodlands (Panther Creek watershed) has experienced
fast-paced residential and commercial developments in the past
three decades. Especially after the 1997 ownership change, the final
date of completion is expected to be 10 years earlier than the date
anticipated by the original developer, George Mitchell (Galatas and
Barlow, 2004). By 2005, around half of the watershed was com-
posed of urban land uses (Fig. 5).

As previously mentioned, McHarg’s planning approach had
experienced several changes, and notable adjustments were made
in 1985 and 1997 (Girling and Helphand, 1994; Galatas and Barlow,
2004). Coincidentally, national LULC datasets of 1984 and 1996
could reflect the development conditions before these changes,
and development was accordingly divided into three periods:
1972-1984, 1985-1996, and 1997-2005. In addition, each period
is associated with a development zone where the majority of the
development occurred during that period.
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Fig. 6. Soil distribution in the Panther Creek watershed (The Woodlands) and three development zones. In Zone I development, McHarg’s approach was well followed. In

Zone Il and Zone Il development, McHarg's approach was largely abandoned.

Fig. 6 presents the three zones and periods and the dis-
tribution of hydrological soil groups in the Panther Creek
watershed. Fig. 7 shows the developed area of each zone
for different soil groups and periods. Developed areas consist
of various urban land uses, including low-density residential,
medium-density residential, high-density residential, and com-
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Fig.7. Development area on different hydrological soil groups in three development
zones during three time periods in the Panther Creek watershed (The Woodlands).
Numbers indicate additional development in stead of accumulative development
areas. In Zone I, majority of the development occurred during 1972-1984, in Zone
Il during 1985-1996, and in Zone Il during 1997-2005.

mercial/industrial/transportation. As Fig. 7 shows, development
occurred mainly during 1972-1984 in Zone I, during 1985-1996
in Zone II, and during 1997-2005 in Zone III. Also notice that infill
developments occurred in Zone II and Zone III in the two later
periods.

Table 4 and Table 5 further combine the data from Fig. 7 to cre-
ate a dichotomy of soil groups: the A and B soil group indicates
soils with sound infiltration capacities, and the C and D soil group
represents soils with poor infiltration capacities. Table 4 shows the
land areas of each soil group, and Table 5 lists development areas
placed on each soil group in each time period.

InZonel, theland area of Aand Bsoils (1327 Ha) is 63% more than
that of Cand D soils (813 Ha). Generally speaking, it is challenging to
follow the natural soil pattern to overlay urban infrastructure and
various developments. For example, layout of a road network needs
to consider engineering principles, safety and sometimes aesthetic
views. Complete match between a proposed road network and the
random soil pattern is nearly impossible. Although it is true that
more development occurred on A and B soils than on C and D soils,
the percentage of developed area on A and B soils (49%) was less

Table 4

Land area and area percentage of two soil groups (A and B; C and D) in three devel-
opment zones in the Panther Creek watershed (The Woodlands). The A and B soil
group represents soils with good infiltration capacities, and the C and D soil group
represents soils with poor infiltration capacities.

Zone area (ha) Aand B Cand D
ha % ha %
Zone | 2140 1327 62 813 38
Zone 11 3232 1351 42 1881 58
Zone I1I 4567 1611 35 2956 65
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Table 5
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Development area and area percentage for two soil groups (A and B; C and D) in three development zones during three time periods in the Panther Creek watershed (The
Woodlands). Numbers indicate additional rather than accumulative development areas in each period.

A and B (ha) Development on A and B Cand D (ha) Development on C and D
ha % ha %

1972-1984

Zone | 1327 654 49 813 606 75
Zone Il 1351 17 1 1881 27 1
Zone III 1611 33 2 2956 3 0
1985-1996

Zone | 1327 306 23 813 67 8
Zone Il 1351 757 56 1881 964 51
Zone III 1611 180 11 2956 382 13
1997-2005

Zone | 1327 100 8 813 44 5
Zone II 1351 146 11 1881 168 9
Zone III 1611 447 28 2956 678 23

than that on C and D soils (75%). This result suggests that A and B
soils were given priority of preservation in Zone I development and
McHarg’s approach was followed during 1972-1984.

In Zone Il during 1985-1996, A and B soils ceased to be the pri-
ority of preservation. The land area of A and B soils (1351 Ha) is
smaller than that of C and D soils (1881 Ha) in Zone II. Yet, a higher
percentage of A and B soils was developed (56%) than that of C and
D soils (51%). In the meantime, 306 Ha of infill development were
placed on A and B soils in Zone I, which accounted for 23% of Zone
[ area. In contrast, the other part of the infill development in this
zone was 67 hectares of development on C and D soils, only 8% of
the zone’s area. This result is consistent with the literature that sug-
gests McHarg’'s approach was less well followed after 1985 (Girling
and Helphand, 1994).

In Zone III during 1997-2005, the departure from McHarg’s
approach was further demonstrated. Even though the land area of
A and B soils (1611 Ha) is only 55% of that of C and D soils (2956 Ha)
in this zone, a higher percentage of A and B soils (28%) than Cand D
soils (23%) was developed. Similar developments that ignored soil
permeability also occurred in Zones I and Il during the 1997-2005
period. Evidently, developments post 1997 had largely abandoned
McHarg’s planning approach.

3.2. SWAT simulation

3.2.1. CN modeling

Developed by NRCS (Hann et al., 1994), CN indicates the site
infiltration and runoff relationship, with a range between 0 and
100. The higher the CN, the larger the runoff volume generated. CN
of 100 indicates no infiltration capacity. SWAT model calculated the
watershed CNs for the five scenarios and the actual conditions of
four different years. The CNresults are presented in Table 3. Anthro-
pogenic land uses (e.g., residential and commercial) were grouped
together as urban developed area. The simulation yielded expected
results, in which the high-density scenarios (Scenarios 2 and 3) had
lower CNs than the low-density scenarios (Scenarios 4 and 5). This
was mainly because the high-density scenarios have smaller total
developed areas than the low-density scenarios.

It was also found that The Woodlands actual development
condition in 2005 was similar to the worst case scenario (Sce-
nario 5, low-density development on sandy soils) simulated in the
watershed modeling. CNs of the 2005 actual condition and the
worst case scenario (Scenario 5) were 80.4 and 80.8, respec-
tively. This indicates that watershed runoff volume of 2005 was
similar to that of the Houston conventional low-density develop-
ment. This result was not expected and details are discussed in
Section 4.

3.2.2. Calibration and validation

Calibration and validation were performed on SWAT and
KINEROS models. In SWAT, CN was adjusted, while in KINEROS CN
and Manning’s n were adjusted. Simulated flows were compared
with USGS measured flows. The calibrated models were then used
for simulation of five scenarios. SWAT calibration shows promising
results in The Woodlands watershed modeling. As shown in Fig. 8,
USGS measured flows can be reasonably predicted by the SWAT
model after calibration. The Nash and Sutcliffe (N-S) model effi-
ciencies also confirm the calibration and validation results (Table 6).
According to Van Liew and Garbrecht (2003), simulation with
yearly data is considered “good” when the N-S efficiencies are
greater than 0.75. When using monthly data, values of N-S effi-
ciencies greater than 0.52 are considered as good results.

3.2.3. Stormwater runoff

Using the observed weather data (2001-2005), the SWAT model
simulated the annual surface runoff for the five land use scenarios,
and the results are presented in Fig. 9. As expected, the high-density
scenarios generated lower amounts of runoff than the low-density
scenarios. For the low-density sandy soil scenario (Scenario 5), where
A and B soils were used for development and became impervious
covers, the value was the highest. All land use scenarios pro-
duced higher runoff compared with the forest condition (Scenario
1). On average, high-density scenarios generated around 40-50%
more runoff than the forest condition, and low-density scenarios
increased these values to around 90-100%. Also note that the dif-
ferences between the two soil groups were not as pronounced as
the differences between the two density groups.

Table 7 shows the average values (2001-2005) of the water-
shed outputs. The trend was evident that surface runoff increased
as development density decreased, where situations became worse
when A and B soils were paved over. Likewise, a similar trend
was predicted that less aquifer recharge and more sediment load-
ing were expected when low-density development spread in the
watershed. From the forest baseline scenario (Scenario 1) to the
low-density development scenarios (Scenarios 4 and 5), sedi-
ment loading and surface runoff almost doubled, whereas aquifer
recharge reduced to less than 50% of the forest condition.

Similar to the results in Fig. 9, Table 7 shows that the differ-
ences of watershed outputs between the two density groups were
larger than the differences between the two soil groups. For exam-
ple, the low-density sandy soil scenario (Scenario 5) would generate
3.4million m3 more runoff than the low-density clay soil scenario
(Scenario 4) on a yearly basis (8% increase). However, in comparing
the low-density sandy soil scenario (Scenario 5) with the high-density
sandy soil scenario (Scenario 3), a more significant increase of 12.3
million m3 runoff (34% increase) would occur.
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Fig. 8. Simulated and observed surface runoff by SWAT for the calibration and validation periods at USGS gauge station #08068450.
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Fig. 9. Simulated annual surface runoff of five land-use scenarios.

3.3. KINEROS simulation

3.3.1. Peak flow

Rainfall return frequencies of 10, 25, 50, and 100 years were
simulated and are presented in Fig. 10. As expected, the high-
density scenarios—high-density clay soil scenario (Scenario 2) and
high-density sandy soil scenario (Scenario 3)—generated lower peak
discharge than the low-density scenarios—low-density clay soil sce-
nario (Scenario 4) and low-density sandy soil scenario (Scenario
5)—for all four frequencies. In addition, the differences between
the two density scenarios were not substantial during small rainfall
frequencies (i.e., 10 years [not shown] and 25 years). But the differ-
ences became more prominent as the rainfall frequency decreased
(i.e., 50 and 100 years). The low-density clay soil scenario (Scenario
4) and the low-density sandy soil scenario (Scenario 5) could create
a peak discharge around nine times of what the high-density clay
soil scenario (Scenario 2) and the high-density sandy soil scenario
(Scenario 3) could have during a 100-year storm.

Similar to the SWAT results, the differences between the two soil
groups were less compared with the differences between two den-
sity groups. The variations within each density group decreased as
the storm frequencies decreased. However, the differences in peak

TI\;GIlc?tizlsefﬁciency and statistics from ordinary least squares regression analyses for the calibration and validation periods.
USGS gauge Nash-Sutcliffe coefficient R?
Calibration Validation Calibration Validation
(monthly) (yearly) (monthly) (yearly) (monthly) (monthly)
#8068450 0.76 0.97 0.63 0.92 0.76 0.70
#8068400 0.71 0.79 0.59 0.98 0.72 0.58

Note: Linear regression analysis, y =a+ bx; independent variable x is precipitation (mm), dependant variable y is stream flow (m3s-1).

Table 7
Simulated watershed outputs, average of years 2001-2005.

Scenario

Surface runoff (106 m3)

Total aquifer recharge (106 m?)

Total sediment loading (tons/year)

1. Forest baseline

2. High-density clay soil
3. High-density sandy soil
4. Low-density clay soil

5. Low-density sandy soil

25.1
338
36.1
45.0
48.4

36.0 565.0
279 753.3
259 753.3
18.2 1035.8
14.9 1035.8
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Fig. 10. Simulated watershed peak discharges of four land use scenarios during
three rainfall frequencies.

discharges between the high-density scenarios were large. During
a 100-year storm, the high-density sandy soil scenario (Scenario 3)
generated around 50% more peak discharge than the high-density
clay soil scenario (Scenario 2). During smaller storms (25 and 50
years), the high-density sandy soil scenario (Scenario 2) generated
around six times more peak discharge than the high-density clay soil
scenario (Scenario 3). Finally, it was unexpected that the low-density
sandy soil scenario (Scenario 5), where A and B soils were paved
over, generated less peak discharge than the low-density clay soil
scenario (Scenario 4), which preserved A and B soils for stormwater
infiltration.

3.3.2. Peak discharge spatial distribution

The spatial patterns of peak discharge at a 100-year frequency
are presented in Fig. 11. Peak discharges were higher in urban-
ized sub-watersheds than in sub-watersheds that remained natural
conditions. In addition, peak discharges increased as the percent-
ages of development increased. Peak discharge patterns in Fig. 11
resembled the land use distributions in Fig. 4. Similar peak dis-
charge patterns were found in other storm frequencies (10, 25, and
50 years), but the variations between sub-watersheds became less
exaggerated as storm frequencies increased.

4. Discussion

These results indicate that The Woodlands land use conditions
were worse than what the original McHarg plan proposed. The 2005
CN (80.4) is close to that of the low-density residential sandy soil
scenario (80.8), the worst case scenario in this study. This value is
also as high as that of the conventional quarter-acre single fam-
ily residential land use (USDA, 2002), and this condition does not
approximate the LID recommendations. Unfortunately, in Zone II
and Zone III developments, soils with good infiltration capacities
were not given the first priority in the community plan. After The
Woodlands ownership changed in 1997, McHarg’s approach was
largely abandoned.

Development density plays an important role in affecting CN
and watershed runoff. Watershed runoff increases around 35%
for high-density scenarios and around 85% for low-density sce-
narios compared with the forest baseline condition. Likewise,
sediment yields increase around 30% and 80% for high- and low-
density scenarios, respectively. These results are also consistent
with previous studies on the relationship between development
densities and watershed outputs (Hammer, 1972; Schueler, 1994).

Schueler (1994) reported that compact development could reduce
site imperviousness by 10-50% and yield less sediment than a dis-
persed impervious surface. This study further demonstrates that
even when the total imperviousness is held constant, high-density
compact development generates 40% less runoff than low-density
development. Compared with “typical development” in Houston,
which often increases peak flows by 180%, flow in The Woodlands
would increase by only 55% according to a simulation study con-
ducted in the 1970s (Spirn, 1984). This finding is consistent with the
findings of this study that predicts the increase in runoff of around
50% for high-density development and 100% for low-density devel-
opment, if McHarg’s approach is followed.

Besides density, the other focus of this study was development
location, thatis, the ideal place to allocate development by soil type.
SWAT model shows that the long-term watershed outflows dif-
fers slightly (7-8%) between the two options in each density group.
In other words, development on clay or sandy soils does not yield
much difference in the long-term watershed outflow. However, the
differences become extraordinary in extreme storms as shown by
the KINEROS model. In a 100-year storm, the high-density sandy
soil scenario (Scenario 3) could generate around 50% higher peak
discharge than the high-density clay soil scenario (Scenario 2).

In short, for long-term watershed runoff and during small rain-
fall events, development density is a more prominent factor than
development location. The development location per soil permeabil-
ity becomes important when extreme rainfalls (e.g., 50 and 100
years) are of concern. Developments that preserve highly per-
meable soils are less prone to flooding. The high-density clay
soil scenario (Scenario 2) represents the best solution among the
four development scenarios. The low-density scenarios (Scenarios
4 and 5)—conventional development typically found in the Hous-
ton area—are the least effective plans in stormwater management.
Therefore, a more comprehensive development approach is to con-
sider both density and location.

Another finding that corresponds to previous studies is that the
pattern of development in the watershed has an influence on peak
discharge (Bedient et al., 1985). In the Panther Creek watershed,
there are more A and B soils than C and D soils in the lower reaches.
The research design thus led more development to be placed on the
lower portion of the watershed in the high-density sandy soil sce-
nario (Scenario 3) and the low-density sandy soil scenario (Scenario
5) than in the high-density clay soil scenario (Scenario 2) and the
low-density clay soil scenario (Scenario 4). Hence, different devel-
opment locations caused differences in peak discharges among
sub-watersheds. The low-density sandy soil scenario (Scenario 5),
although it was projected to be the worst case scenario, generated
less peak discharges than the low-density clay soil scenario (Scenario
4). This result could be attributed to the large open space preserved
in the upper reaches of the watershed in the low-density sandy soil
scenario (Scenario 5) that detained a large amount of runoff and
retarded the momentum of peak discharge when it flowed to the
watershed outlet. There are vast differences between each sub-
watershed in terms of development densities and soil conditions
across the four scenarios. For this reason, comparing peak discharge
of each sub-watershed in different scenarios was not possible in this
study.

Today, development pattern in The Woodlands presents a gra-
dient from adherence to abandonment of McHarg’s approach. In
the early period, the pattern was largely determined by an impor-
tant environmental factor—soil permeability. In the later period,
especially after 1997, the pattern gradually shifted to conventional
“cookie-cutter” Houston type of development. Soil permeability, as
defined by NRCS hydrological soil group, has been a good consider-
ation in the selection of building locations. The common practice is
to place building foundations on sandy soils and to avoid clay soils,
because sandy soils provide better drainage and have a higher bear-
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Fig. 11. Spatial distribution of peak discharge during 100-year storms. (a) High-density clay soil scenario (Scenario 2), (b) high-density sandy soil scenario (Scenario 3), (c)
low-density clay soil scenario (Scenario 4), and (d) low-density sandy soil scenario (Scenario 5).

ing capacity than clay soils. To build foundations on clay soils may
require special treatment, which adds to the construction cost.

McHarg’s concept is in contrast to the common practice and
expands from site-level scale to community and regional scales.
In The Woodlands development, McHarg suggested building on
clay soils while preserving sand soils, to respond to a major site
constraint—flooding hazard in the Houston coastal area (McHarg,
1996). As indicated by historical extreme storms, this concept used
in the first two suburban villages evidently minimized the potential
flooding damage to the community property (Girling and Kellett,
2005). The additional cost due to the special treatment of building
foundations thus became minor.

5. Conclusions

When integrating urban development into the natural sys-
tem, planners and landscape architects must seek harmony rather
than produce conflict. There are several important factors affecting
stormwater runoff, including precipitation volume and intensity,

time parameters, and soil permeability. Perhaps the only factor that
designers can manipulate is ground cover (density, configuration,
and surface texture). McHarg’s plan for The Woodlands was based
on a profoundly simple concept: coordinating development den-
sity and land use based on the hydrological properties of the soils.
His plan aimed to maintain the natural hydrological conditions and
to minimize urbanization impacts.

The Woodland’s 2005 land use condition has deviated from
McHarg’s original plan. In particular, developments post 1997, the
year of The Woodlands’ ownership change, did not use soil per-
meability as a critical guide for planning. Watershed stream flow
modeling on different hypothetical scenarios strongly suggests
that compact high-density development combined with McHarg’s
approach is the best solution among development approaches
compared in this study. Using soil permeability to coordinate devel-
opment densities and land use presents a viable solution to the
flooding problems in community development.

Finally, it is important to reiterate that this study only exam-
ined snapshots of development conditions of four years. Future
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study needs to include more samples that present more variations
of the watershed conditions. The Woodlands’ current conditions,
despite having a quality that is less than originally proposed, are
further ahead than conventional solutions. The Woodlands’ plan-
ning, design, and management present an excellent example of
eco-conscious urban planning for design professionals to consider.
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