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Abstract  
 
Soil moisture is one of the basic links between the 
water and energy cycles of land surfaces through its 
regulation of infiltration, runoff, transpiration and 
thermal capacity. In this study, an operational 
modeling system of soil moisture at hillslope (local) 
to watershed (regional) scales has been developed 
using the community Noah land-surface model 
(LSM). This system simulates profiles of soil 
moisture (both liquid and frozen) and soil 
temperature, skin temperature, snowpack depth, 
snowpack water equivalent (and hence snowpack 
density), canopy water content, and surface water 
and energy fluxes, including runoff, infiltration, and 
evapotranspiration. The system was tested using soil 
moisture data from the Monsoon ‘90 experiment, 
carried out at the Walnut Gulch Experimental 
Watershed (WGEW), near Tombstone, Arizona. The 
results show that the system has the potential for 
operational soil moisture modeling. 
 
Keywords: soil moisture, land-surface model, 
Monsoon ’90, soil-vegetation-atmosphere transfer 
 
Introduction 
 
Routine, or operational, estimates of hillslope-to-
watershed scale soil moisture have potential 
applications in regional resource management, 
including flood and water resource forecasting, 
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irrigation scheduling and determining mobility with 
lightweight vehicles. Hillslope scales may be 
defined as 10 to 100 m and watershed scales range 
from 1,000 to 25,000 km2. Watershed management 
applications generally require daily soil moisture 
information to depths ranging from the sub-surface 
(15 cm) to the entire root zone (>1 m), while remote 
sensing-based products provide only surface soil 
moisture at depths ranging from 1-5 cm over bi-
weekly to monthly intervals. Therefore, we are 
developing a combined approach using Soil 
Vegetation Atmosphere Transfer (SVAT) models 
and remotely sensed observations to provide routine 
daily estimates of profile soil moisture. 
 
SVAT models have generally been developed for 
weather and climate modeling applications, and 
typically include solution of a form of the Richards’ 
equation, including representation of parameters and 
processes controlling the evolution of soil moisture 
such as infiltration, evapotranspiration, percolation 
and drainage (see also Moran et al., in review). In 
this work, we apply a publicly available SVAT 
model known as the community Noah LSM (Chen et 
al. 1996), which has been validated at the point and 
watershed scale with respect to its water and energy 
balance predictions. In the following sections, we 
describe the application of the model to the 
Monsoon ’90 field program conducted in WGEW, 
and assess the suitability of the SVAT model for 
operationally predicting hillslope-to-watershed scale 
soil moisture. 
 
Monsoon ‘90 
 
In the summer of 1990, the Monsoon’90 large-scale 
interdisciplinary field experiment was conducted in 
the 148 km2 WGEW (Figure 1). During 
Monsoon’90, daily gravimetric soil moisture data 
were collected at eight micrometeorological-energy 
flux (Metflux) sites, in addition to standard 
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meteorological variables and surface fluxes. In 
addition, an airborne L-band Push Broom 
Microwave Radiometer (PBMR) mounted on a 
National Aeronautics and Space Administration 
(NASA) C-130 aircraft was flown at an altitude of 
600m above the ground to yield soil moisture 
products derived from measured microwave 
brightness temperature Tb (Schmugge et al. 1994). 
Tb data were collected over an approximately 8 x 20 
km area with a 40 m horizontal resolution for six 
days: 212 (Jul. 31), 214 (Aug. 2), 216 (Aug. 4), 217 
(Aug. 5), 220 (Aug. 8), and 221 (Aug. 9), as shown 
in Figure 2. 
 

 
Figure 1. Walnut Gulch Experimental Watershed, 
showing location of 8 Metflux sites (Kustas and 
Goodrich, 1994). 

 

 
 
Figure 2. PBMR soil moisture product over WGEW 
for DOY 214 (Aug. 2) 1990. 
 

We have assessed the overall error of the PBMR 
product versus the gravimetric observations 
collected to a depth of 5 cm, and found the expected 
compound error to be 4.5% + 1.9%. Figure 3 
illustrates the ability of the PBMR data to capture 
the hillslope-scale 5-cm soil moisture over time 
during Monsoon ‘90, as measured by gravimetric 
methods and converted to volumetric units. As the 
figure shows, the PBMR data is able to capture the 
dynamic range of the soil moisture observations. 
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Figure 3. Time series of 5-cm soil moisture 
measured at the 8 Metflux sites by PBMR and 
gravimetric sampling. Error bars indicate the 
standard deviations of gravimetric observations, 
based on 3 samples per metflux site, or 24 samples 
total. 
 
Modeling Approach 
 
The publicly available community Noah LSM (Chen 
et al. 1996), is applied to the WGEW for Monsoon 
’90 by configuring the model to execute over a 660 
by 333 grid domain with a horizontal resolution of 
40m. There are four vertical soil layers, with 
thicknesses of 5, 25 60 and 75 cm. To provide time 
for “spin-up”, simulations commenced at 0000 
GMT, DOY 204 and ended at 2300 GMT, DOY 
227. Initial soil moisture and temperature at the four 
depths are interpolated from observations at the 
eight Metflux sites. Input parameters and near-
surface atmospheric forcing data are required as 
described below. 
 
Forcing data 
 
The NOAH LSM requires input forcing data that 
includes precipitation, solar radiation, long wave 
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radiation, temperature, relative humidity, wind speed 
and surface pressure. The dynamic meteorological 
forcing data were obtained from Houser (1996), who 
applied a state-of-the-science interpolation algorithm 
to precipitation data collected at 88 rain gauges 
deployed over the watershed. All other 
meteorological forcings were assumed to be spatially 
constant, given that they were available only at some 
of the Metflux sites. 
 
Parameters  
 
Soil texture and land cover data are required to 
specify hydraulic, thermal and radiative parameters 
required by the LSM. Soil texture data sets 
considered for operational use include, from finest to 
coarsest resolution, Soil Survey Geographic 
(SSURGO), Soil Dataset, State Soil Geographic 
(STATSGO) Soil Dataset, and Soil texture from 
Food and Agricultural Organization of United 
Nations (FAO).  Interestingly, there is only one soil 
type in the Walnut Gulch watershed in both 
STATSGO and FAO soil classifications: loamy sand 
for STATSGO and Sandy loam for FAO. All soil 
texture data were mapped to the texture classes of 
Cosby et al. (1984), as shown in Figure 4 for 
SSURGO data, since Noah uses their lookup tables 
to determine soil hydraulic parameters. In addition to 
the soil texture data sets, Saturated Hydraulic 
Conductivity and Porosity were derived directly 
from the SSURGO data as an optional input to the 
LSM. 
 

 
 
Figure 4. SSURGO soil texture data reclassified 
according to Cosby et al., 1984. 
 

Three land cover data sets were also considered for 
use in operational soil moisture modeling. They 
include the 1992 NALC land cover data set 
(NALC92), the Environmental Protection Agency 
(EPA) and United States Geological Survey (USGS) 
land cover data set (GIRAS), and Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
land cover. Given that the Noah model has adopted 
parameter lookup tables according to the 
classification of Dorman and Sellers (1989), these 
land cover data sets were remapped to their 13 land 
cover types, as shown in Figure 5 for NALC, in 
order to utilize the parameter lookup tables within 
Noah. In addition, LAI, greenness fraction and 
albedo data were obtained from Houser (1996) as 
optional inputs to the model. 
 

 
 
Figure 5. NALC land cover data reclassified 
according to Dorman and Sellers (1989). 
 
Input degradation experiments  
 
In addition to a control run, in which the highest 
resolution soil texture and land cover data sets were 
used along with image inputs of key soils and 
vegetation parameters, three sets of parameter 
degradation experiments were conducted. This first 
set of experiments explores the impact of soil 
parameter inputs (lookup table vs. images) as well as 
the impact of coarser resolution soils data on 
operational soil moisture prediction. The second set 
of degradation experiments focuses on degrading 
land cover inputs (tables vs. images) as well as land 
cover source data sets from finest to coarsest. The 
third set of experiments explores the impact of 
degrading precipitation data, by applying averaging 



 343 

windows to the data to simulate rainfall radar inputs 
as well as watershed average rainfall. The results of 
these experiments will be compared to that from the 
control in the next section. 
 
Results 
 
Overall, the results from the control run suggest that 
the Noah model is skillful in predicting watershed-
scale soil moisture, as shown in Table 1. Figures 6 
and 7 further illustrate the time series of watershed-
scale RMS error and bias, respectively. These results 
suggest that the model error is close to the observed 
error, but that there is a persistent high bias in the 
model. The cause for the high bias has been further 
explored at the hillslope scale, as discussed below. 
 
Table 1. Results of the control run. 
RUN MODEL PBMR RMS BIAS
SSURGO + Ksat +Porosity Input 0.14 0.09 0.08 0.05  
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Figure 6. Time series of watershed-scale RMS error 
for the control run. 

Bias
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Figure 7. Time series of watershed-scale bias for the 
control run. 

Comparisons between model predictions at the 
hillslope scale are made by extracting the model and 
PBMR 40 x 40 m pixels in the vicinity of the 
gravimetric sampling sites (as shown in Figure 1). 
This analysis suggests that the model physics is 
generally consistent with the observed, but that there 
is a persistent high bias at certain Metflux sites, as 
shown in Figure 8 for Metflux site 7. 
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Figure 8. Time series of modeled and measured soil 
moisture for Metflux site 7 illustrating high bias in 
the initial conditions for the model. 
 
This bias is likely the result of a poor initial 
condition, and the fact that the model was initialized 
only 8 days prior to the experiment. Further analysis 
suggests that bias is a strong function of soils and 
land cover parameters (not shown), with sites 
classified as “bare soil” exhibiting high bias during 
the wettest period, and sites classified as “loam” or 
“sandy clay loam” exhibiting the highest bias 
throughout the period. 
 
Following the assessment of the model at the 
watershed and hillslope scales, an assessment of the 
models sensitivity to data sets was conducted in 
order to determine the level of effort required for 
operational implementation. 
 
Soils degradation experiments 
 
Soil data sets were degraded from SSURGO to 
STATSGO to FAO, in addition to replacing the 
SSURGO-derived images of hydraulic parameters 
with those using Cosby et al. (1984) lookup tables. 
The results of these experiments are summarized in 
Table 2. 
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Table 2. Results of the soils degradation 
experiments. First experiment denotes the control 
run, with the finest available parameter inputs. 
RUN MODEL PBMR RMS BIAS
SSURGO + Ksat +Porosity Input 0.14 0.09 0.08 0.05
SSURGO + Lookup Table 0.18 0.09 0.10 0.10
STATSGO + Lookup Table 0.13 0.09 0.06 0.04
FAO + Lookup Table 0.15 0.09 0.07 0.06  
 
 
As illustrated by the table, RMS errors are lower for 
STATSGO and FAO soils than for SSURGO, 
although this is likely due to the fact that the 
STATSGO and FAO soil classifications reclassify 
soils with the highest errors to those with the lowest 
errors. An important result is that the soil parameter 
lookup table clearly degrades results, as shown by 
comparing the control run in line 1 with the lookup 
table run in line 2. Given the PBMR product errors 
of approximately 4.5% + 1.9%, the differences 
among SSURGO, STATSGO and FAO may not be 
statistically significant. 
 
Land cover degradation experiments  
 
Land cover data sets were degraded from NALC, to 
EPA/USGS to MODIS, in addition to replacing the 
Houser (1996) images of land cover parameters with 
those using default Noah lookup tables. The results 
of these experiments are summarized in Table 3.   
 
Table 3. Results of the land cover degradation 
experiments. First experiment denotes the control 
run, with the finest available parameter inputs. 
RUN MODEL PBMR RMS BIAS
NALC+Greenness+Albedo Images 0.14 0.09 0.08 0.05
NALC+Lookup Table 0.13 0.09 0.08 0.04
EPA+Lookup Table 0.18 0.09 0.10 0.09
MODIS+Lookup Table 0.17 0.09 0.09 0.08  
 
As illustrated by the table, the soil moisture bias is 
slightly lower for lookup tables as compared to the 
control run image input, although as with the soils 
degradation experiments, the differences are likely 
not statistically significant. However, the soil 
moisture bias is clearly increased with EPA and 
MODIS land cover, suggesting that the higher 
resolution NALC land cover is important for 
operational soil moisture modeling. 
 
Rainfall degradation experiments  
 
Finally, a set of rainfall degradation experiments was 
conducted to assess the importance of high 

resolution rainfall input for soil moisture modeling. 
These experiments consisted of degrading the 
original interpolated rain gauge data by taking first 
10x9 pixel averages, then 30x37 pixel averages, then 
watershed average rainfall, as illustrated in Figure 9. 
 

 
 
Figure 9. Original and degraded rainfall for DOY 
204. 
 
The results of these degradation experiments are 
summarized in Table 4, which indicates the 
counterintuitive result that the domain average 
rainfall produces the best results. This can be 
explained by noting the consistent wet bias caused 
by improper spin-up, which is counteracted by the 
domain average rainfall, as it tends to underestimate 
local rainfall rates. This leads to an overall reduction 
in RMS as well, since most of the error in the model 
is bias. 
 
Table 4. Results of the rainfall degradation 
experiments. First experiment denotes the control 
run, with the finest available parameter inputs. 
RUN MODEL PBMR RMS BIAS
Interpolated Gauge Rainfall 0.14 0.09 0.08 0.05
400m Average 0.12 0.09 0.07 0.03
1200m Average 0.12 0.09 0.07 0.03
Domain Average Rainfall 0.08 0.09 0.05 -0.01  
 



 345 

Conclusions 
 
In summary, a publicly available LSM has been 
applied to the problem of operational soil moisture 
prediction using data sets collected during the 
Monsoon ’90 field program. The PBMR soil 
moisture products for Monsoon ’90 were derived 
from regressions at 8 gravimetric sampling 
locations, with an expected compound error of 
4.5%+1.9%V/V, although locally the error may be 
in excess of 8%. 
 
The Noah LSM has a positive (wet) bias, which 
persists throughout the Monsoon ’90 period. Causes 
of error include a poor initial condition, with high 
bias caused by inadequate spinup, an 
underestimation of losses such as 
evapotranspiration, likely caused by underestimates 
of greenness and high stomatal resistance 
parameters. Overall, the model is shown to 
adequately predict soil moisture at the watershed 
scale, with errors in predicted soil moisture at about 
8%V/V for the “best” input data. The parameter 
degradation experiments indicate that using lookup 
tables for soil hydraulic parameters clearly degrades 
results, and that the results are highly sensitive to 
rainfall data input. Given that degraded rainfall 
offsets the high bias in the initial conditions, it is 
likely that given proper initial conditions, degraded 
rainfall would result in a dry bias. This suggests that 
spatially distributed rainfall input is critical to 
accurate operational soil moisture prediction. 
 
Current and future work with this modeling system 
is focusing on integrating the LSM with a 
geographic information systems (GIS) interface in 
order to facilitate use of the system for applications, 
including regional resource management, flood and 
water resource forecasting, irrigation scheduling and 
determining mobility with lightweight vehicles. As 
part of this process, we are developing tools to 
facilitate the substantial data preprocessing activities 
involved, including interpolation and downscaling of 
coarse resolution or point-scale data sets to the 
hillslope scales required for these applications. 
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